MAX32650–MAX32652
ERRATA SHEET

Revision A1 Errata

The errata listed below describe situations where components of this revision perform differently than expected or differently than described in the data sheet. Maxim Integrated Products, Inc. may, at its own discretion, take future steps to correct these errata when the opportunity to redesign the product presents itself. Prior to that, Maxim has determined the following potential workarounds that customers may want to consider when addressing one of the situations described below.

This errata sheet only applies to components of this revision. These components are branded on the topside of the package with a six-digit code in the form yywwRR, where yy and ww are two-digit numbers representing the year and work week of manufacture, respectively, and RR is the revision of the component. To obtain an errata sheet on other die revisions, visit our website at www.maximintegrated.com/errata.

1) DATA WRITES TO GCR_MEMCKCN[31:6] ARE MISALIGNED

Description:
Data written to GCR_MEMCKCN[31:6] is unintentionally shifted three positions to the left.

Workaround:
Shift the 32 bits of the intended data three positions to the right before the write operation. Bits GCR_MEMCKCN[15:3] are reserved for future use, and shifting data through these bits does not affect device operation. After the write operation, an OR operation must be used to program the Program Flash Wait State bits, GCR_MEMCKCN[2:0], to the desired nonzero value.

The following example puts System RAM 5 and 6 in light sleep mode and sets the Program Flash Wait States to 3:

GCR_MEMCKCN = (0x00600000 >> 3) | 0x3;

2) GCR_MEMCKCN[5:3] MIRROR GCR_MEMCKCN[2:0]

Description:
GCR_MEMCKCN[5:3] maintain their reset value of 000b unless explicitly changed. Reads of these bits, however, returns the value of GCR_MEMCKCN[2:0] instead.

Workaround:
None required. GCR_MEMCKCN[5:3] are RFU.
3) SMART DMA CANNOT OPERATE AS INTENDED IF RESET OCCURS DURING SDMA LOW-POWER OPERATION

Description:
The SDMA can become unresponsive if a system reset occurs while the SDMA is in its low-power mode. The only way to recover from this situation is to perform a power-on reset of the device.

Workaround:
Characterize the system operation to determine the most likely circumstances under which a system reset can occur, and avoid placing the SDMA in its low power mode during those periods.

4) I2S IN SLAVE MODE CAN RECORD INCORRECT DATA IF A PARTIAL WORD IS RECEIVED DURING LEFT CHANNEL RECEPTION

Description:
While in slave mode, receipt of a partial/truncated word in the left data channel loads incorrect data into the I2S Rx FIFO.

Workaround:
1) Do not enable the I2S peripheral while the I2S master is transmitting.
2) Ensure that the I2S master begins all transmissions with a complete word.

5) SYSTEM CANNOT OPERATE AS INTENDED WHEN USING THE 32kHz CRYSTAL OR INTERNAL 7MCLK CLOCK AND THE DEVICE IS RESET

Description:
The device does not operate as expected if the RSTN pin is asserted or a watchdog timer occurs while the 32kHz crystal or internal 7MCLK clock is selected as the system clock source.

Workaround:
Use the internal high frequency oscillator as the system clock source and select a large divisor if low-speed/low-power operation is required.

6) HYP_CK AND HYP_CKN DRIVE STRENGTH IS FIXED AT 1x

Description:
The drive strength of the HYP_CK and HYP_CKN pins is fixed at the 1x setting regardless of the control bits.

Workaround:
None. Ensure the interface to the HYP_CK and HYP_CKN pins is compatible with the relevant electrical specifications in the data sheet.

7) DEVICE DOES NOT EXIT BACKGROUND MODE IF SYSTEM CLOCK FREQUENCY IS FASTER THAN THE LPCLK FREQUENCY

Description:
The device does not exit Background mode if the system clock frequency is faster than the LPCLK frequency.

Workaround:
The software workaround for this erratum has been implemented in the appropriate Maxim-supplied API.
8) HYP_CS1 SIGNAL IS NOT DRIVEN INACTIVE WHILE THE HYPERBUS IS IDLE

Description:
The output driver on the HYP_CS1 pin is disabled when the hyperbus is idle. Devices connected to the HYP_CS1 signal are not guaranteed to enter their deselected state.

Workaround:
Configure the GPIO associated with the HYP_CS1 pin to input mode with the internal strong/normal pullup enabled. This pulls the HYP_CS1 signal to its inactive state while the hyperbus is idle.
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5/18</td>
<td>Initial release</td>
<td>—</td>
</tr>
</tbody>
</table>
