**General Description**

The MAX3222/MAX3232/MAX3237/MAX3241 transceivers have a proprietary low-dropout transmitter output stage enabling true RS-232 performance from a 3.0V to 5.5V supply with a dual charge pump. The devices require only four small 0.1µF external charge-pump capacitors. The MAX3222, MAX3232, and MAX3241 are guaranteed to run at data rates of 120kbps while maintaining RS-232 output levels. The MAX3237 is guaranteed to run at data rates of 250kbps in normal operating mode and 1Mbps in the MegaBaud™ operating mode.

The MAX3222/MAX3232 have 2 receivers and 2 drivers. The MAX3222 and MAX3232 are pin, package, and functionally compatible with the industry-standard MAX242 and MAX3232, respectively.

The MAX3241 has 5 receivers and 3 drivers, while the MAX3237 has 3 receivers and 5 drivers. Receivers R1 (MAX3237/MAX3241) and R2 (MAX3241) have extra outputs in addition to their standard outputs. These extra outputs are always active, allowing external devices to be monitored without forward biasing the protection diodes in circuitry that may have VCC completely removed.

The MAX3222, MAX3232, and MAX3241 are available in space-saving TSSOP and SSOP packages with operating temperatures of either -40°C to +70°C or 0°C to 70°C.

**Applications**

- Battery-Powered Equipment
- Hand-Held Equipment
- Peripherals
- Datacom Equipment

**Benefits and Features**

- Integrated Features Saves Board Space and Simplifies Design
- Charge Pump Circuitry Eliminates the Need for a Bipolar ±12V Supply
- Wide Single-Supply Operation From +3V to +5.5V Supply
- Always-On Extra Outputs Enable Monitoring of External Devices
- Power Saving Extends Battery Life
- 1µA Supply Current in Shutdown Mode While Receiver is Active (MAX3222, MAX3237, MAX3241)

**Ordering Information**

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>PKG CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX3222CUP+</td>
<td>0°C to +70°C</td>
<td>20 TSSOP</td>
<td>U20+2</td>
</tr>
<tr>
<td>MAX3222CAP+</td>
<td>0°C to +70°C</td>
<td>20 SSOP</td>
<td>A20+1</td>
</tr>
<tr>
<td>MAX3222CWN+</td>
<td>0°C to +70°C</td>
<td>18 SO</td>
<td>W18+1</td>
</tr>
<tr>
<td>MAX3222CPN+</td>
<td>0°C to +70°C</td>
<td>18 Plastic Dip</td>
<td>P18+5</td>
</tr>
</tbody>
</table>

*Denotes lead-free package.

**Pin Configurations**

**Ordering Information continued at end of data sheet.**

**Typical Operating Circuits appear at end of data sheet.**

---

MegaBaud and UCSP are trademarks of Maxim Integrated Products, Inc.

*Covered by U.S. Patent numbers 4,636,930; 4,679,134; 4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.
MAX3222/MAX3232/
MAX3237/MAX3241
3.0V to 5.5V, Low-Power, Up to 1Mbps,
True RS-232 Transceivers

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC Power-Supply Current</td>
<td>No load, VCC = 3.3V or 5.0V, TA = +25°C</td>
<td>MAX3222/MAX3232/ MAX3241</td>
<td>0.3</td>
<td>1.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX3237</td>
<td>0.5</td>
<td>2.0</td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Supply Current</td>
<td>SHDN = GND, TA = +25°C</td>
<td>1.0</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Continuous Power Dissipation (TA = +70°C)
16-Pin TSSOP (derate 6.7mW/°C above +70°C)......533mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C)...762mW
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)...842mW
18-Pin SO (derate 9.52mW/°C above +70°C).................762mW
18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW
20-Pin SSOP (derate 7.00mW/°C above +70°C)...........559mW
20-Pin TSSOP (derate 8.00mW/°C above +70°C)...........640mW
28-Pin SSOP (derate 9.52mW/°C above +70°C)...........762mW
28-Pin SO (derate 12.50mW/°C above +70°C).............1W

Operating Temperature Ranges
MAX32_ _C_ _ ...................................................0°C to +70°C
MAX32_ _E_ _  .............................................. -40°C to +85°C
Storage Temperature Range ............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C

Note 1: V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(VCC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

- Continuous Power Dissipation (TA = +70°C)
- Operating Temperature Ranges
- Storage Temperature Range
- Lead Temperature (soldering, 10s)

www.maximintegrated.com
Electrical Characteristics (continued)

(V\textsubscript{CC} = +3.0V to +5.5V, C1–C4 = 0.1\mu F (Note 2), T\textsubscript{A} = T\textsubscript{MIN} to T\textsubscript{MAX}, unless otherwise noted. Typical values are at T\textsubscript{A} = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Hysteresis</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>T\textsubscript{A} = +25°C</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>kΩ</td>
</tr>
<tr>
<td><strong>TRANSMITTER OUTPUTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>All transmitter outputs loaded with 3kΩ to ground</td>
<td>±5.0</td>
<td>±5.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>V\textsubscript{CC} = V+ = V- = 0V, V\textsubscript{OUT} = ±2V</td>
<td>300</td>
<td>10M</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Output Short-Circuit Current</td>
<td></td>
<td>±35</td>
<td>±60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>V\textsubscript{OUT} = ±12V, V\textsubscript{CC} = 0V or 3V to 5.5V, transmitters disabled</td>
<td>±25</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td><strong>MOUSE DRIVEABILITY (MAX3241)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter Output Voltage</td>
<td>T1\textsubscript{IN} = T2\textsubscript{IN} = GND, T3\textsubscript{IN} = V\textsubscript{CC}, T3\textsubscript{OUT} loaded with 3kΩ to GND, T1\textsubscript{OUT} and T2\textsubscript{OUT} loaded with 2.5mA each</td>
<td>±5.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Timing Characteristics—MAX3222/MAX3232/MAX3241

(V\textsubscript{CC} = +3.0V to +5.5V, C1–C4 = 0.1\mu F (Note 2), T\textsubscript{A} = T\textsubscript{MIN} to T\textsubscript{MAX}, unless otherwise noted. Typical values are at T\textsubscript{A} = +25°C.)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Data Rate</td>
<td>R\textsubscript{L} = 3kΩ, C\textsubscript{L} = 1000pF, one transmitter switching</td>
<td>120</td>
<td>235</td>
<td></td>
<td>kbps</td>
</tr>
<tr>
<td>Receiver Propagation Delay</td>
<td>R\textsubscript{IN} to R\textsubscript{OUT}, C\textsubscript{L} = 150pF</td>
<td>t\textsubscript{PHL}</td>
<td>0.3</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Receiver Output Enable Time</td>
<td>Normal operation</td>
<td>t\textsubscript{PLH}</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver Output Disable Time</td>
<td>Normal operation</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Transmitter Skew</td>
<td></td>
<td>t\textsubscript{PHL} - t\textsubscript{PLH}</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver Skew</td>
<td></td>
<td>t\textsubscript{PHL} - t\textsubscript{PLH}</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition-Region Slew Rate</td>
<td>V\textsubscript{CC} = 3.3V, R\textsubscript{L} = 3kΩ to 7kΩ, +3V to -3V or -3V to +3V, T\textsubscript{A} = +25°C, one transmitter switching</td>
<td>C\textsubscript{L} = 150pF to 1000pF</td>
<td>6</td>
<td>30</td>
<td>V/μs</td>
</tr>
<tr>
<td></td>
<td>C\textsubscript{L} = 150pF to 2500pF</td>
<td>C\textsubscript{L} = 150pF to 2500pF</td>
<td>4</td>
<td>30</td>
<td>V/μs</td>
</tr>
</tbody>
</table>
Timing Characteristics—MAX3237

\(V_{CC} = +3.0V\) to \(+5.5V\), \(C1–C4 = 0.1\mu F\) (Note 2), \(T_A = T_{MIN}\) to \(T_{MAX}\), unless otherwise noted. Typical values are at \(T_A = +25^\circ C\).}

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Data Rate</td>
<td>(R_L = 3k\Omega), (C_L = 1000pF), one transmitter switching, (MBAUD = GND)</td>
<td>250</td>
<td></td>
<td></td>
<td>kbps</td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3.0V) to (+4.5V), (R_L = 3k\Omega), (C_L = 250pF), one transmitter switching, (MBAUD = V_{CC})</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 4.5V) to (+5.5V), (R_L = 3k\Omega), (C_L = 1000pF), one transmitter switching, (MBAUD = V_{CC})</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver Propagation Delay</td>
<td>(R_{IN} to R_{OUT}, C_L = 150pF)</td>
<td>(t_{PHL})</td>
<td>0.15</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t_{PLH})</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver Output Enable Time</td>
<td>Normal operation</td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Receiver Output Disable Time</td>
<td>Normal operation</td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Transmitter Skew</td>
<td>(</td>
<td>t_{PHL} - t_{PLH}</td>
<td>, MBAUD = GND</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>t_{PHL} - t_{PLH}</td>
<td>, MBAUD = V_{CC}</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Receiver Skew</td>
<td>(</td>
<td>t_{PHL} - t_{PLH}</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Transition-Region Slew Rate</td>
<td>(V_{CC} = 3.3V), (R_L = 3\Omega) to (7\Omega), (+3V) to (-3V) or (-3V) to (+3V), (T_A = +25^\circ C)</td>
<td>(C_L = 150pF) to (1000pF)</td>
<td>(MBAUD = GND)</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MBAUD = V_{CC})</td>
<td>24</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(C_L = 150pF) to (2500pF), (MBAUD = GND)</td>
<td></td>
<td>4</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Note 2: MAX3222/MAX3232/MAX3241: \(C1–C4 = 0.1\mu F\) tested at \(3.3V \pm 10\%\); \(C1 = 0.047\mu F\), \(C2–C4 = 0.33\mu F\) tested at \(5.0V \pm 10\%\). MAX3237: \(C1–C4 = 0.1\mu F\) tested at \(3.3V \pm 5\%\); \(C1–C4 = 0.22\mu F\) tested at \(5.0V \pm 10\%\); \(C1 = 0.047\mu F\), \(C2–C4 = 0.33\mu F\) tested at \(5.0V \pm 10\%\).

Note 3: Transmitter input hysteresis is typically 250mV.

Typical Operating Characteristics

\(V_{CC} = +3.3V\), 235kbps data rate, 0.1\mu F capacitors, all transmitters loaded with \(3k\Omega\), \(T_A = +25^\circ C\), unless otherwise noted.)
**MAX3222/MAX3232/MAX3237/MAX3241**

3.0V to 5.5V, Low-Power, Up to 1Mbps, True RS-232 Transceivers

**Typical Operating Characteristics (continued)**

(VCC = +3.3V, 235kbps data rate, 0.1μF capacitors, all transmitters loaded with 3kΩ, TA = +25°C, unless otherwise noted.)

---

**MAX3241**

TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE

- 1 TRANSMITTER AT 235kbps
- 2 TRANSMITTERS AT 30kbps

**MAX3241**

SLEW RATE vs. LOAD CAPACITANCE

- -SLEW, 1Mbps
- +SLEW, 1Mbps
- -SLEW, 2Mbps
- +SLEW, 2Mbps

**MAX3241**

SUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA

- 1 TRANSMITTER AT FULL DATA RATE
- 4 TRANSMITTERS AT 1/16 DATA RATE
- 3kΩ + CLOAD, EACH OUTPUT

**MAX3237**

TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND)

- 1 TRANSMITTER AT 240kbps
- 4 TRANSMITTERS AT 15kbps
- 3kΩ + CLOAD, EACH OUTPUT

**MAX3237**

TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = VCC)

- 1 TRANSMITTER AT FULL DATA RATE
- 4 TRANSMITTERS AT 1/16 DATA RATE
- 3kΩ + CLOAD, EACH OUTPUT

**MAX3237**

SLEW RATE vs. LOAD CAPACITANCE (MBAUD = GND)

- 1 TRANSMITTER AT 240kbps
- 4 TRANSMITTERS AT 15kbps
- 3kΩ + CLOADS

**MAX3237**

SLEW RATE vs. LOAD CAPACITANCE (MBAUD = VCC)

- 1 TRANSMITTER AT FULL DATA RATE
- 4 TRANSMITTERS AT 1/16 DATA RATE
- 3kΩ + CLOADs

**MAX3237**

SUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA

- 1 TRANSMITTER AT FULL DATA RATE
- 4 TRANSMITTERS AT 1/16 DATA RATE
- 3kΩ + CLOAD, EACH OUTPUT

---

Maxim Integrated

www.maximintegrated.com
## Pin Description

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>MAX3222</strong></td>
</tr>
<tr>
<td>DIP/SO SSOP</td>
<td>1 1 — — 13 23</td>
<td>EN</td>
</tr>
<tr>
<td>2 2</td>
<td>1 28 28</td>
<td>C1+</td>
</tr>
<tr>
<td>3 3</td>
<td>2 27 27</td>
<td>V+</td>
</tr>
<tr>
<td>4 4</td>
<td>3 25 24</td>
<td>C1-</td>
</tr>
<tr>
<td>5 5</td>
<td>4 1 1</td>
<td>C2+</td>
</tr>
<tr>
<td>6 6</td>
<td>5 3 2</td>
<td>C2-</td>
</tr>
<tr>
<td>7 7</td>
<td>6 4 3</td>
<td>V-</td>
</tr>
<tr>
<td>8,15 8,17 7,14</td>
<td>5,6,7,10,12 9,10,11</td>
<td>T_OUT</td>
</tr>
<tr>
<td>9,14 9,16 8,13 8,9,11</td>
<td>4–8</td>
<td>R_IN</td>
</tr>
<tr>
<td>10,13 10,15 9,12</td>
<td>18,20,21 15–19</td>
<td>R_OUT</td>
</tr>
<tr>
<td>11,12 12,13 10,11 17,19,22,23,24</td>
<td>12,13,14</td>
<td>T_IN</td>
</tr>
<tr>
<td>16</td>
<td>18 15</td>
<td>2 25</td>
</tr>
<tr>
<td>17</td>
<td>19 16</td>
<td>26 26</td>
</tr>
<tr>
<td>18</td>
<td>20 —</td>
<td>14 22</td>
</tr>
<tr>
<td>—</td>
<td>11,14 — — —</td>
<td>N.C.</td>
</tr>
<tr>
<td>— — — 15 —</td>
<td>MBAUD</td>
<td>MegaBaud Control Input. Connect to GND for normal operation; connect to V_CC for 1Mbps transmission rates.</td>
</tr>
<tr>
<td>— — — 16 20,21</td>
<td>R_OUTB</td>
<td>Noninverting Complementary Receiver Outputs. Always active.</td>
</tr>
</tbody>
</table>
Detailed Description

Dual Charge-Pump Voltage Converter
The MAX3222/MAX3232/MAX3237/MAX3241’s internal power supply consists of a regulated dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge pump), regardless of the input voltage (VCC) over the 3.0V to 5.5V range. The charge pumps operate in a discontinuous mode; if the output voltages are less than 5.5V, the charge pumps are enabled, and if the output voltages exceed 5.5V, the charge pumps are disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies.

RS-232 Transmitters
The transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. The MAX3222/MAX3232/MAX3241 transmitters guarantee a 120kbps data rate with worst-case loads of 3kΩ in parallel with 1000pF, providing compatibility with PC-to-PC communication software (such as LapLink™). Typically, these three devices can operate at data rates of 235kbps. Transmitters can be paralleled to drive multiple receivers or mice.

LapLink is a trademark of Traveling Software, Inc.

MAX3222/MAX3232/MAX3237/MAX3241 3.0V to 5.5V, Low-Power, Up to 1Mbps, True RS-232 Transceivers

The MAX3222/MAX3237/MAX3241’s output stage is turned off (high impedance) when the device is in shutdown mode. When the power is off, the MAX3222/MAX3232/MAX3237/MAX3241 permit the outputs to be driven up to ±12V.

The transmitter inputs do not have pullup resistors. Connect unused inputs to GND or VCC.

MAX3237 MegaBaud Operation
In normal operating mode (MBAUD = GND), the MAX3237 transmitters guarantee a 250kbps data rate with worst-case loads of 3kΩ in parallel with 1000pF. This provides compatibility with PC-to-PC communication software, such as LapLink.

For higher speed serial communications, the MAX3237 features MegaBaud operation. In MegaBaud operating mode (MBAUD = VCC), the MAX3237 transmitters guarantee a 1Mbps data rate with worst-case loads of 3kΩ in parallel with 250pF for 3.0V < VCC < 4.5V. For 5V ±10% operation, the MAX3237 transmitters guarantee a 1Mbps data rate into worst-case loads of 3kΩ in parallel with 1000pF.

Figure 1. Slew-Rate Test Circuits
RS-232 Receivers
The receivers convert RS-232 signals to CMOS-logic output levels. The MAX3222/MAX3237/MAX3241 receivers have inverting three-state outputs. In shutdown, the receivers can be active or inactive (Table 1). The complementary outputs on the MAX3237 (R1OUTB) and the MAX3241 (R1OUTB, R2OUTB) are always active, regardless of the state of EN or SHDN. This allows for Ring Indicator applications without forward biasing other devices connected to the receiver outputs. This is ideal for systems where VCC is set to 0V in shutdown to accommodate peripherals, such as UARTs (Figure 2).

MAX3222/MAX3237/MAX3241 Shutdown Mode
Supply current falls to less than 1μA in shutdown mode (SHDN = low). When shut down, the device's charge pumps are turned off, V+ is pulled down to VCC, V- is pulled to ground, and the transmitter outputs are disabled (high impedance). The time required to exit shutdown is typically 100μs, as shown in Figure 3. Connect SHDN to VCC if the shutdown mode is not used. SHDN has no effect on R_OUT or R_OUTB.

MAX3222/MAX3237/MAX3241 Enable Control
The inverting receiver outputs (R_OUT) are put into a high-impedance state when EN is high. The complementary outputs R1OUTB and R2OUTB are always active, regardless of the state of EN and SHDN (Table 1). EN has no effect on T_OUT.

Applications Information
Capacitor Selection
The capacitor type used for C1–C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires 0.1μF capacitors for 3.3V operation. For other supply voltages, refer to Table 2 for required capacitor values. Do not use values lower than those listed in Table 2. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, and C4, to maintain the proper ratios (C1 to the other capacitors).

When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in doubt, use capacitors with a higher nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.

Figure 2. Detection of RS-232 Activity when the UART and Interface are Shut Down; Comparison of MAX3237/MAX3241 (b) with Previous Transceivers (a).
Power-Supply Decoupling
In most circumstances, a 0.1μF bypass capacitor is adequate. In applications that are sensitive to power-supply noise, decouple VCC to ground with a capacitor of the same value as charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible.

Operation Down to 2.7V
Transmitter outputs will meet EIA/TIA-562 levels of ±3.7V with supply voltages as low as 2.7V.

Transmitter Outputs when Exiting Shutdown
Figure 3 shows two transmitter outputs when exiting shutdown mode. As they become active, the two transmitter outputs are shown going to opposite RS-232 levels (one transmitter input is high, the other is low). Each transmitter is loaded with 3kΩ in parallel with 2500pF. The transmitter outputs display no ringing or undesirable transients as they come out of shutdown. Note that the transmitters are enabled only when the magnitude of V- exceeds approximately 3V.

Mouse Driveability
The MAX3241 has been specifically designed to power serial mice while operating from low-voltage power supplies. It has been tested with leading mouse brands from manufacturers such as Microsoft and Logitech. The MAX3241 successfully drove all serial mice tested and met their respective current and voltage requirements. Figure 4a shows the transmitter output voltages under increasing load current at 3.0V. Figure 4b shows a typical mouse connection using the MAX3241.
Figure 4a. MAX3241 Transmitter Output Voltage vs. Load Current per Transmitter

Figure 4b. Mouse Driver Test Circuit

MAX3222/MAX3232/MAX3237/MAX3241
3.0V to 5.5V, Low-Power, Up to 1Mbps, True RS-232 Transceivers

www.maximintegrated.com
**High Data Rates**

The MAX3222/MAX3232/MAX3241 maintain the RS-232 ±5.0V minimum transmitter output voltage even at high data rates. Figure 5 shows a transmitter loopback test circuit. Figure 6 shows a loopback test result at 120kbps, and Figure 7 shows the same test at 235kbps. For Figure 6, all transmitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000pF. For Figure 7, a single transmitter was driven at 235kbps, and all transmitters were loaded with an RS-232 receiver in parallel with 1000pF.

The MAX3237 maintains the RS-232 ±5.0V minimum transmitter output voltage at data rates up to 1Mbps. Figure 8 shows a loopback test result at 1Mbps with MBAUD = VCC. For Figure 8, all transmitters were loaded with an RS-232 receiver in parallel with 250pF.

---

**Figure 5. Loopback Test Circuit**

**Figure 6. MAX3241 Loopback Test Result at 120kbps**

**Figure 7. MAX3241 Loopback Test Result at 235kbps**

**Figure 8. MAX3237 Loopback Test Result at 1000kbps (MBAUD = VCC)**
Interconnection with 3V and 5V Logic
The MAX3222/MAX3232/MAX3237/MAX3241 can directly interface with various 5V logic families, including ACT and HCT CMOS. See Table 3 for more information on possible combinations of interconnections.

### Table 3. Logic-Family Compatibility with Various Supply Voltages

<table>
<thead>
<tr>
<th>SYSTEM POWER-SUPPLY VOLTAGE (V)</th>
<th>MAX32__ VCC SUPPLY VOLTAGE (V)</th>
<th>COMPATIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>3.3</td>
<td>Compatible with all CMOS families.</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Compatible with all TTL and CMOS-logic families</td>
</tr>
<tr>
<td>5</td>
<td>3.3</td>
<td>Compatible with ACT and HCT CMOS, and with TTL. Incompatible with AC, HC, and CD4000 CMOS.</td>
</tr>
</tbody>
</table>

**Typical Operating Circuits**

**MAX3222**

- **C1+**, **C1-**, **C2+**, **C2-**
- **R1IN**, **R2OUT**
- **T1IN**, **T1OUT**, **T2IN**, **T2OUT**
- **VCC**, **V+**
- **C1**, **C2**, **C3**, **C4**
- **0.1µF**

**MAX3232**

- **C1+**, **C1-**, **C2+**, **C2-**
- **R1IN**, **R2OUT**
- **T1IN**, **T1OUT**, **T2IN**, **T2OUT**
- **VCC**, **V+**
- **C1**, **C2**, **C3**, **C4**
- **0.1µF**

*PIN NUMBERS REFER TO DIP/SO PACKAGES.*

*C3 CAN BE RETURNED TO EITHER VCC OR GROUND.*

SEE TABLE 2 FOR CAPACITOR SELECTION
Typical Operating Circuits (continued)

* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.

* C3 CAN BE RETURNED TO EITHER VCC OR GROUND.
Pin Configurations (continued)

MAX3222/MAX3232/MAX3237/MAX3241

3.0V to 5.5V, Low-Power, Up to 1Mbps, True RS-232 Transceivers

www.maximintegrated.com
### Ordering Information (continued)

<table>
<thead>
<tr>
<th>PART</th>
<th>TEMP RANGE</th>
<th>PIN-PACKAGE</th>
<th>PKG CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX3222EUP+</td>
<td>-40°C to +85°C</td>
<td>20 TSSOP</td>
<td>U20+2</td>
</tr>
<tr>
<td>MAX322EAP+</td>
<td>-40°C to +85°C</td>
<td>20 SSOP</td>
<td>A20+1</td>
</tr>
<tr>
<td>MAX322EWN+</td>
<td>-40°C to +85°C</td>
<td>18 SO</td>
<td>W18+1</td>
</tr>
<tr>
<td>MAX322EPN+</td>
<td>-40°C to +85°C</td>
<td>18 Plastic Dip</td>
<td>P18+5</td>
</tr>
<tr>
<td>MAX322C/D</td>
<td>0°C to +70°C</td>
<td>Dice*</td>
<td>—</td>
</tr>
<tr>
<td>MAX323CAE+</td>
<td>0°C to +70°C</td>
<td>16 SSOP</td>
<td>A16+2</td>
</tr>
<tr>
<td>MAX323CUE+</td>
<td>0°C to +70°C</td>
<td>16 TSSOP</td>
<td>U16+1</td>
</tr>
<tr>
<td>MAX323CSE+</td>
<td>0°C to +70°C</td>
<td>16 Narrow SO</td>
<td>S16+1</td>
</tr>
<tr>
<td>MAX323CWE+</td>
<td>0°C to +70°C</td>
<td>16 Wide SO</td>
<td>W16+1</td>
</tr>
<tr>
<td>MAX323EWE+</td>
<td>-40°C to +85°C</td>
<td>16 TSSOP</td>
<td>U16+1</td>
</tr>
<tr>
<td>MAX323EPE+</td>
<td>-40°C to +85°C</td>
<td>16 Plastic Dip</td>
<td>P16+1</td>
</tr>
<tr>
<td>MAX323CAI+</td>
<td>0°C to +70°C</td>
<td>16 SSOP</td>
<td>A16+2</td>
</tr>
<tr>
<td>MAX323EAI+</td>
<td>0°C to +70°C</td>
<td>28 SSOP</td>
<td>A28+1</td>
</tr>
<tr>
<td>MAX3241CUI+</td>
<td>0°C to +70°C</td>
<td>28 TSSOP</td>
<td>U28+2</td>
</tr>
<tr>
<td>MAX3241CAI+</td>
<td>0°C to +70°C</td>
<td>28 SSOP</td>
<td>A28+1</td>
</tr>
<tr>
<td>MAX3241CWI+</td>
<td>0°C to +70°C</td>
<td>28 SO</td>
<td>W28+6</td>
</tr>
<tr>
<td>MAX3241EUI+</td>
<td>0°C to +70°C</td>
<td>28 TSSOP</td>
<td>U28+2</td>
</tr>
<tr>
<td>MAX3241EAI+</td>
<td>0°C to +70°C</td>
<td>28 SSOP</td>
<td>A28+1</td>
</tr>
<tr>
<td>MAX3241EWI+</td>
<td>0°C to +70°C</td>
<td>28 SO</td>
<td>W28+6</td>
</tr>
</tbody>
</table>

*Dice are tested at $T_A = +25°C$, DC parameters only. +Denotes lead-free package.

### 3V-Powered EIA/TIA-232 and EIA/TIA-562 Transceivers from Maxim

<table>
<thead>
<tr>
<th>PART</th>
<th>POWER-SUPPLY VOLTAGE (V)</th>
<th>NO. OF TRANSMITTERS/RECEIVERS</th>
<th>NO. OF RECEIVERS ACTIVE IN SHUTDOWN</th>
<th>GUARANTEED DATA RATE (kbps)</th>
<th>EIA/TIA-232 OR 562</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX212</td>
<td>3.0 to 3.6</td>
<td>3/5</td>
<td>5</td>
<td>120</td>
<td>232</td>
<td>Drives mice</td>
</tr>
<tr>
<td>MAX218</td>
<td>1.8 to 4.25</td>
<td>2/2</td>
<td>2</td>
<td>120</td>
<td>232</td>
<td>Operates directly from batteries without a voltage regulator</td>
</tr>
<tr>
<td>MAX562</td>
<td>2.7 to 5.25</td>
<td>3/5</td>
<td>5</td>
<td>230</td>
<td>562</td>
<td>Wide supply range</td>
</tr>
<tr>
<td>MAX563</td>
<td>3.0 to 3.6</td>
<td>2/2</td>
<td>2</td>
<td>230</td>
<td>562</td>
<td>0.1μF capacitors</td>
</tr>
<tr>
<td>MAX3212</td>
<td>2.7 to 3.6</td>
<td>3/5</td>
<td>5</td>
<td>235</td>
<td>232</td>
<td>AutoShutdown, complementary receiver, drives mice, transient detection</td>
</tr>
<tr>
<td>MAX3222</td>
<td>3.0 to 5.5</td>
<td>2/2</td>
<td>2</td>
<td>120</td>
<td>232</td>
<td>0.1μF capacitors</td>
</tr>
<tr>
<td>MAX3223</td>
<td>3.0 to 5.5</td>
<td>2/2</td>
<td>2</td>
<td>120</td>
<td>232</td>
<td>0.1μF capacitors, AutoShutdown</td>
</tr>
<tr>
<td>MAX3232</td>
<td>3.0 to 5.5</td>
<td>2/2</td>
<td>N/A</td>
<td>120</td>
<td>232</td>
<td>0.1μF capacitors</td>
</tr>
<tr>
<td>MAX3237</td>
<td>3.0 to 5.5</td>
<td>5/3</td>
<td>3</td>
<td>250/1000</td>
<td>232</td>
<td>0.1μF capacitors, 1 complementary receiver, MegaBaud operation</td>
</tr>
<tr>
<td>MAX3241</td>
<td>3.0 to 5.5</td>
<td>3/5</td>
<td>5</td>
<td>120</td>
<td>232</td>
<td>0.1μF capacitors, 2 complementary receivers, drives mice</td>
</tr>
<tr>
<td>MAX3243</td>
<td>3.0 to 5.5</td>
<td>3/5</td>
<td>1</td>
<td>120</td>
<td>232</td>
<td>0.1μF capacitors, AutoShutdown, complementary receiver, drives mice</td>
</tr>
</tbody>
</table>
### Package Information

For the latest package outline information and land patterns (footprints), go to [www.maximintegrated.com/packages](http://www.maximintegrated.com/packages). Note that a “+”, “#”, or “−” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

<table>
<thead>
<tr>
<th>PACKAGE TYPE</th>
<th>PACKAGE CODE</th>
<th>OUTLINE NO.</th>
<th>LAND PATTERN NO.</th>
<th>THERMAL RESISTANCE (SINGLE LAYER BOARD)</th>
<th>THERMAL RESISTANCE (MULTI LAYER BOARD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θJA (°C/W)</td>
<td>θJC (°C/W)</td>
</tr>
<tr>
<td>20 TSSOP</td>
<td>U20+2</td>
<td>21-0066</td>
<td>90-0116</td>
<td>91</td>
<td>20</td>
</tr>
<tr>
<td>20 SSOP</td>
<td>A20+1</td>
<td>21-0056</td>
<td>90-0094</td>
<td>125</td>
<td>33</td>
</tr>
<tr>
<td>18 SO</td>
<td>W18+1</td>
<td>21-0042</td>
<td>90-0181</td>
<td>105</td>
<td>22</td>
</tr>
<tr>
<td>18 Plastic Dip</td>
<td>P18+5</td>
<td>21-0043</td>
<td>—</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Dice*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16 TSSOP</td>
<td>U16+1</td>
<td>21-0066</td>
<td>90-0117</td>
<td>106</td>
<td>27</td>
</tr>
<tr>
<td>16 Narrow SO</td>
<td>S16+1</td>
<td>21-0041</td>
<td>90-0097</td>
<td>115</td>
<td>32</td>
</tr>
<tr>
<td>16 Wide SO</td>
<td>W16+1</td>
<td>21-0042</td>
<td>90-0107</td>
<td>105</td>
<td>22</td>
</tr>
<tr>
<td>16 Plastic Dip</td>
<td>P16+1</td>
<td>21-0043</td>
<td>—</td>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>16 Narrow SO</td>
<td>S16+5</td>
<td>21-0041</td>
<td>90-0097</td>
<td>115</td>
<td>32</td>
</tr>
<tr>
<td>16 SSOP</td>
<td>A16+2</td>
<td>21-0056</td>
<td>90-0106</td>
<td>140</td>
<td>34</td>
</tr>
<tr>
<td>16 SSOP</td>
<td>A28+2</td>
<td>21-0056</td>
<td>90-0095</td>
<td>105</td>
<td>24</td>
</tr>
<tr>
<td>28 SSOP</td>
<td>A28+1</td>
<td>21-0056</td>
<td>90-0095</td>
<td>110</td>
<td>25</td>
</tr>
<tr>
<td>28 TSSOP</td>
<td>U28+2</td>
<td>21-0066</td>
<td>90-0171</td>
<td>78</td>
<td>13</td>
</tr>
<tr>
<td>28 SO</td>
<td>W28+6</td>
<td>21-0042</td>
<td>90-0109</td>
<td>80</td>
<td>18</td>
</tr>
<tr>
<td>28 TSSOP</td>
<td>U28+2</td>
<td>21-0066</td>
<td>90-0171</td>
<td>78</td>
<td>13</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISION DATE</th>
<th>DESCRIPTION</th>
<th>PAGES CHANGED</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1/07</td>
<td>General updates</td>
<td>1, 15, 16, 17</td>
</tr>
<tr>
<td>8</td>
<td>6/18</td>
<td>Updated Package Information and Ordering Information</td>
<td>1, 15, 16, 17</td>
</tr>
<tr>
<td>9</td>
<td>4/19</td>
<td>Added Thermal Resistance data in the Package Information table</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>5/19</td>
<td>Updated Package Information table</td>
<td>16</td>
</tr>
</tbody>
</table>