

Power Supply Subsystems for Vital Sign Monitors

Second Edition January 25, 2022

Edited by: Analog Devices Applications Staff

Table of Contents

Introduction	5
Who Should Read This?	5
How is This Applicable?	5
Remote Patient Monitor and Medical Wearable System Configurations	6
How Power Supply Noise Affects Biosensing Data	7
Battery Choices for Wearable Applications	7
Switch-Mode Power Supply Circuits	8
Analog 1.8V SMPS Circuit Using the MAX38640A (Buck) Device	8
Analog 1.8V SMPS Circuit Validation Checklist	9
Typical Operating Characteristics	10
Troubleshooting the MAX38640A (Analog 1.8V Output) SMPS Circuit	12
Digital 1.8V SMPS Circuit Using the MAX38640A (Buck) Device	17
Digital 1.8V SMPS Circuit Validation Checklist	18
Typical Operating Characteristics	19
Troubleshooting the MAX38640A (Digital 1.8V Output) SMPS Circuit	21
Digital 1.8V SMPS Circuit Using the MAX17220 (Boost) Device	26
Digital 1.8V SMPS Circuit Validation Checklist	27
Typical Operating Characteristics	28
Troubleshooting the MAX17220 (Digital 1.8V Output) SMPS Circuit	30
Analog 5V SMPS Circuit Using the MAX20343H (Boost) Device	35
Analog 5.0V SMPS Circuit Validation Checklist	36
Typical Operating Characteristics	37
Troubleshooting the MAX20343H (5V Output) SMPS Circuit	39
Analog 1.8V/Digital 1.8V/Analog 5.0V SMPS Circuit Using the MAX77642 Device	45
MAX77642 1.8V/1.8V/5.0V SMPS Circuit Validation Checklist	46
Typical Operating Characteristics	47
Troubleshooting the MAX77642 (1.8V/1.8V/5V Output) SMPS Circuit	53
System Integration Guidelines	61

Table of Figures

Figure 1. Typical Power Supply Configuration	7
Figure 2. Analog 1.8VDC MAX38640A SMPS Circuit for Wearable/Healthcare Applications	8
Figure 3. Line Load for Analog 1.8V MAX38640A SMPS Circuit	10
Figure 4. Efficiency of Analog 1.8V MAX38640A SMPS Circuit	10
Figure 5. Typical Output Ripple Characteristic (V _{IN} = 4.2VDC, I _S = 100mA)	
Figure 6. Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)	
Figure 7. Troubleshooting the MAX38640A SMPS Circuit	
Figure 8. Typical MAX38640A VLX Waveform with Light Load	13
Figure 9. Typical MAX38640A VLX Waveform	
Figure 10. MAX38640A Duty Cycle Versus Output Voltage	14
Figure 11. MAX38640A Output Ripple Waveform	16
Figure 12. Digital 1.8VDC MAX38640A SMPS Circuit for Wearable Medical/Healthcare Applications	
Figure 13. Line Load for the Digital MAX38640A SMPS Circuit	
Figure 14. Efficiency of the Digital 1.8V MAX38640A SMPS Circuit	
Figure 15. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_s = 100mA)	
Figure 16: Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)	
Figure 17. Troubleshooting the MAX38640A SMPS Circuit	
Figure 18. Typical MAX38640A VLX Waveform with Light Load	
Figure 19. Typical MAX38640A VLX Waveform	
Figure 20. MAX38640A Duty Cycle Versus Output Voltage	
Figure 21. MAX38640A Output Ripple Waveform	
Figure 22. Digital 1.8VDC MAX17220 SMPS Circuit for Wearable Medical/Healthcare Applications	
Figure 23. Line Load for the Digital MAX17220 SMPS Circuit	
Figure 24. Efficiency of the Digital 1.8V MAX17220 SMPS Circuit	
Figure 25. Typical Output Ripple Characteristic (V_{IN} = 1.5VDC, I_s = 2mA)	
Figure 26: Typical Output Ripple Voltage (V_{IN} = 1.5VVDC, I_s = 45mA)	
Figure 27: Troubleshooting the MAX17220 SMPS Circuit	
Figure 28: Typical MAX17220 V_{LX} Waveform with 2mA Load	
Figure 29: Typical MAX17220 V_{LX} Waveform with 45mA Load.	
Figure 30: MAX17220 V _{LX} Frequency vs. Load Current	
Figure 31: MAX17220 Output Ripple Waveform with 45mA Load Current	
Figure 32. Analog 5VDC MAX20343H SMPS Circuit for Wearable Medical Applications	
Figure 33. Line Load of the Analog 5V MAX20343H SMPS Circuit	
Figure 34. Efficiency of the Analog 5V MAX20343H SMPS Circuit	
Figure 35. Typical Output Ripple Characteristic ($V_{IN} = 4.2VDC$, $I_S = 100mA$)	
Figure 36. Typical Output Ripple Characteristic ($V_{IN} = 4.2VDC$, $I_S = 100mA$)	
Figure 37. Troubleshooting the MAX20343H Circuit	
Figure 38. Typical MAX20343H HVLX Waveform with Light Load (10mA)	
Figure 39. Typical MAX20343H HVLX Waveform with 125mA Load	
Figure 40. Typical MAX20343H HVLX Waveform with 246mA Load	
Figure 40. Typical MAX20343H HVLX waveform with 246mA Load Figure 41. MAX20343H (5V) Output Ripple Waveform	
rigure 41. IVIAA20343H (SV) Output Ripple Wavelorm	43

Figure 42. Analog 1.8V/Digital 1.8V/Analog 5.0V MAX77642 SMPS Circuit for Wearable Medical	
Applications	45
Figure 43. Line Load of the Digital 1.8V MAX77642 SMPS Circuit	47
Figure 44. Efficiency of the Digital 1.8V MAX77642 SMPS Circuit	47
Figure 45. Typical Output Ripple Characteristic (V _{IN} = 4.2VDC, I _S = 100mA)	48
Figure 46. Typical Output Ripple Voltage (V _{IN} = 4.2VDC, I _S = 100mA)	48
Figure 47. Line Load of the Analog 1.8V MAX77642 SMPS Circuit	49
Figure 48. Efficiency of the Analog 1.8V MAX77642 SMPS Circuit	49
Figure 49. Typical Output Ripple Characteristic (V _{IN} = 4.2VDC, I _S = 100mA)	50
Figure 50. Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)	50
Figure 51. Line Load of the Analog 5V MAX77642 SMPS Circuit	51
Figure 52. Efficiency of the Analog 5V MAX77642 SMPS Circuit	51
Figure 53. Typical Out Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)	52
Figure 54. Typical Output Ripple Voltage (V_{IN} = 4.2V, I_S = 100mA)	52
Figure 55. Troubleshooting the MAX77642 SMPS Circuit	53
Figure 56. Typical MAX77642 LXA Waveform (SSB0 & SSB1 IOUT = 1.2mA; SSB2 IOUT = 126.1mA)	54
Figure 57. MAX77642 SSB0 (Dig 1.8V) Ripple Waveform (V_{IN} = 4.2V, I_{OUT} = 100mA)	58
Figure 58. MAX77642 SSB1 (Analog 1.8V) Ripple Waveform (V_{IN} = 4.2V, I_{OUT} = 100mA)	59
Figure 59. MAX77642 SSB2 (5.0V) Ripple Waveform (V _{IN} = 4.2V, I _{OUT} = 100mA)	60
Figure 60. Power Supply "Star" Routing Topology	61

Introduction

This document offers descriptions of pre-validated power supply circuits for use with biosensing devices intended for wearable medical and healthcare applications. In addition, each power supply circuit example is complemented with a validation checklist and troubleshooting guide to aid circuit designers if needed.

All circuits have been designed, built, and tested to ensure the SNR performance of each Analog Devices biosensing AFE device (See the "<u>How Power Supply Noise Affects Sensing Data</u>" section).

Who Should Read This?

Part Number	Function
MAX30001CWV+	ECG, R-to-R, Pace, and BioZ Biosensor
MAX30003CWV+	Ultra-Low Power, Single-Channel Integrated Biopotential (ECG,
	R-to-R Detection) AFE
MAX30004CWV+	Ultra-Low Power, Single-Channel Integrated Biopotential HR
	Detection AFE
MAX86140ENP+	Optical Pulse Oximeter and Heart Rate Biosensor (MAX86140
MAX86141ENP+	Single Channel; MAX86141 Dual Channel)
MAX86176ENX+	ECG, Optical Pulse Oximeter, and Heart Rate Biosensor
MAX86131CWA+	Electrochemical Biosensor
MAX30208CLB+	±0.1°C Accurate, I ² C Digital Temperature Sensor

This guide is beneficial for engineers designing remote patient monitors and consumable diagnostic devices using Analog Devices vital sign monitoring AFEs.

How is This Applicable?

Retrieving actionable information from biosensor data requires excellent system signal-to-noise performance. Adopting Analog Devices analog front ends (AFE) is the first step towards this goal (Maxim Integrated mgineer Blog: Designing Accurate, Wearable Optical Heart Rate Monitors; August 2017; Easson, Craig). The next step should be complemented with a well-founded power supply design.

This cookbook:

- Guides engineers to select a power supply configuration based on system requirements
- Provides reference circuits and layouts of both discrete and integrated designs
- Presents a power supply performance test methodology to validate the system over different device use cases and transient loading conditions

- Presents a comprehensive checklist to validate the implementation
- Includes test data expected from a successful implementation to allow readers to assess their specific results
- Provides system integration guidelines
- Provides troubleshooting instructions to address implementation issues

Remote Patient Monitor and Medical Wearable System Configurations

This cookbook is applicable to designs with the following requirements:

- Proper power system architecture including a power/ground system design that isolates digital from analog domain circuits
- Very high signal-to-noise performance required at sampling rates below 1kHz
- Sufficient power supply decoupling and filtering to ensure biosensor performance
- Lab test validation of biosensing systems with extensive test conditions (e.g., overstress level testing, evaluation of "wake" and "sleep" mode changes, etc.)
- Small system form factor and low weight
- Maintain sufficient battery life with low battery weight and cost. Most of the systems are kept in standby or low power state
- Uses one or more (primary or secondary) batteries with nominal voltage ranging from 1.0V to 4.2V. For example:
 - LP401230 3.7V 105mAh Secondary (Rechargeable) Cell LiPo Battery
 - CR2032 3.0V 235mAh Primary (Non-rechargeable) Cell Li Battery
- Includes devices which require one or more voltage rails, for example
 - 1.8V for digital devices (V_{DIG}) with fast transitions and high operating current
 - 1.8V analog supply (V_{ANA}) where power supply noise affects sensor data integrity
 - 5V supply for LED currents (V_{LED}) in optical systems.

Analog Devices' rechargeable power system configuration is designed to work with input voltages ranging from 3.0V to 4.2V, typical of Li-Ion or LiPo rechargeable batteries. Three outputs are generated: two 1.8V supplies (V_{ANA} and V_{DIG}) and one 5V supply (V_{LED}). Figure 1 shows a block diagram for reference. One supply is a tightly regulated 1.8V digital supply to power the digital sections of a microcontroller where noise is typical with fast transitions of digital signals.

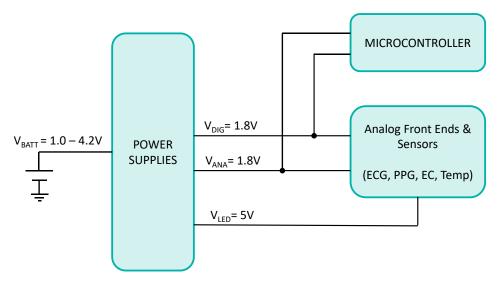


Figure 1. Typical Power Supply Configuration

How Power Supply Noise Affects Biosensing Data

Switching power supplies (a.k.a. DC-DC Converters) generate high frequency noise (ripple and switching spikes) that can be aliased in-band when vital sign signals are sampled at lower frequencies by the AFE ((Mathuranathan, 2011, p. 3) ref). To avoid performance degradation of wearable medical/healthcare systems, this noise requires mitigation. Key vital sign features for advanced applications involve very weak (i.e., small) signals, often requiring 100dB or better signal-to-noise ratio (SNR).

Mitigating this signal-to-noise degradation can involve many design techniques applied to system architecture, circuit, and layout design. This cookbook provides all design and validation considerations for each recommended configuration.

Battery Choices for Wearable Applications

Common wearable battery types can be categorized into two basic groups: primary cell (nonrechargeable) and secondary cell (rechargeable) batteries. Examples of primary cell batteries include alkaline, Li-ion, zinc-air, and silver-oxide varieties and secondary cell battery examples include Li-ion and lithium polymer (LiPo or LiPoly) cells. Currently, Lithium Ion and Lithium Polymer batteries are preferred for wearable applications due to their size, weight, rechargeability, energy density, and eco-friendliness.

The designer should be aware that each battery type has its own electrical characteristics (e.g., voltage output level, energy storage level, charge/discharge behavior, etc.), thus an appropriate switch-mode power supply (SMPS) circuit needs to be implemented. In addition, as newer battery types are deployed, the designer needs to evaluate, characterize, and possibly redesign their power supply circuits accordingly.

The DC-DC converter circuits (a.k.a. Switch-Mode Power Supplies or SMPS) presented in this document identify all battery types used.

Switch-Mode Power Supply Circuits

The following sections highlight operational details of known good reference designs including:

- Circuit description including web links to applicable design files (schematic/BOM/layout)
- Validation checklist to confirm the implemented circuit function
- Select test data plots highlighting typical operating characteristics
- Troubleshooting Instructions

Both discrete and integrated switch-mode power supply options are offered to help designers accommodate their specific PCB layout requirements.

Analog 1.8V SMPS Circuit Using the MAX38640A (Buck) Device

The following MAX38640A circuit (Figure 2) illustrates typical input and output power supply levels for a properly operating Switch-Mode Power Supply (SMPS) device in wearable medical/healthcare applications. As shown in Figure 2, digital multimeters (DMM) can be used to probe the input and output ports to validate the supply voltage levels. Note that power supply output levels can vary due to various factors such as:

- Battery discharge
- Changing loads (e.g., device mode changes, devices waking up from sleep mode, etc.)

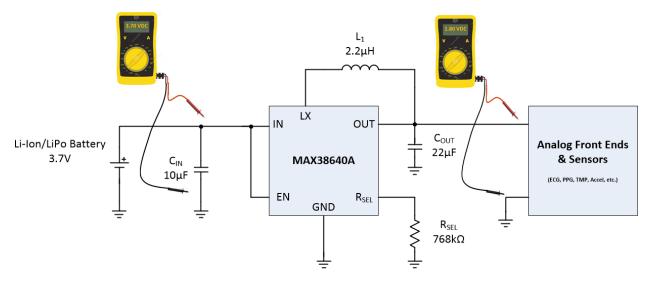


Figure 2. Analog 1.8VDC MAX38640A SMPS Circuit for Wearable/Healthcare Applications

The following link can be used to obtain the MAX38640A circuit reference design files.

Design File Type	Name	Format	Link
Schematic	MAX38640A_MPS_cookbook_Apps_P1_Schematic	Multiple	Reference Design
Bill of	Build_BOM_MAX38640A_MPS_cookbook_Apps_P1	Excel	<u>Resources</u>
Materials			
Layout	MAX38640A_MPS_cookbook_Apps_P1_ODB++.tgz	Multiple	

Analog 1.8V SMPS Circuit Validation Checklist

The following table can be used as a checklist to validate the operation of the analog 1.8V SMPS circuit using the MAX38640A device while connected to a load.

Step	Action	Procedure	Measurement	Need Help?
1	Check input DC	Measure voltage	Reading range:	Troubleshooting
Ţ	power supply	across battery	2.8V to 4.2V	Instructions
2		Measure voltage	Reading range:	
Z		across C _{IN}	2.8V to 4.2V	
3	Check VOUT DC level	Measure voltage	Reading range:	
3		across Cout	1.71V to 1.89V	
4		Measure voltage	Reading range:	
4		across load	1.71V to 1.89V	
	Check Output Noise	*Use differential	Ripple Noise level	
5	Level	oscilloscope probe	should be <20mV _{PP}	
		method across Cout		

Typical Operating Characteristics

The following figures highlight the typical operating characteristics of the MAX38640A circuit under various load conditions. The test equipment used includes:

- Input Power Supply Source: B&K Precision BK1718 DC power supply
- Electronic Load: MAXREFDES1213 Smart Load using the MAX32630FTHR and MAX11311
- Benchtop DMM: B&K Precision BK2831E True RMS Bench digital multimeter

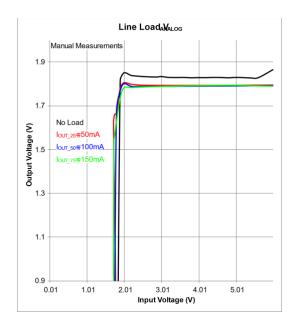


Figure 3. Line Load for Analog 1.8V MAX38640A SMPS Circuit

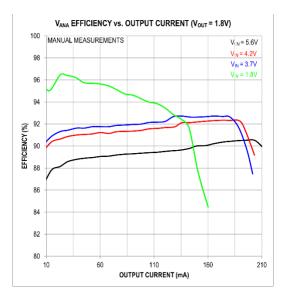


Figure 4. Efficiency of Analog 1.8V MAX38640A SMPS Circuit

Typical Operating Characteristics

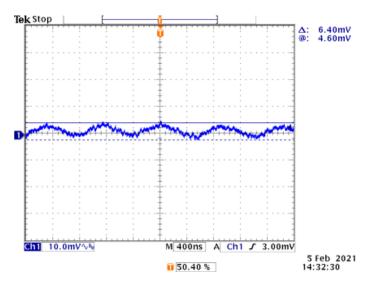


Figure 5. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

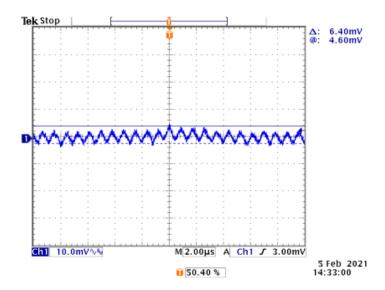


Figure 6. Typical Output Ripple Voltage ($V_{IN} = 4.2VDC$, $I_S = 100mA$)

Troubleshooting the MAX38640A (Analog 1.8V Output) SMPS Circuit

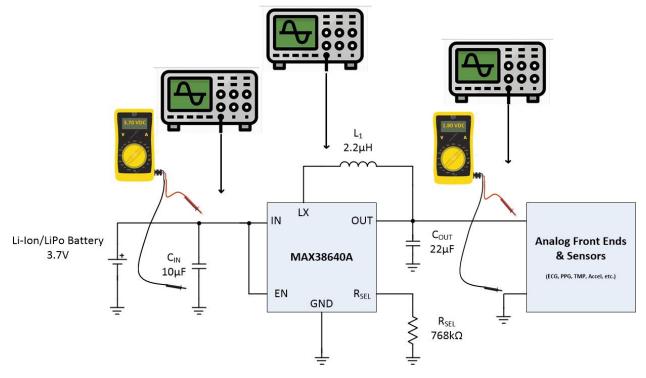


Figure 7. Troubleshooting the MAX38640A SMPS Circuit

Troubleshooting the MAX38640A SMPS Circuit:

Step 1. Check the Input Voltage: Using a digital multimeter (DMM) with an internal impedance of a $1M\Omega$ or larger (e.g., Fluke 87), measure the voltage at the input to the MAX38640A device. Be sure to connect the negative black lead to ground and the positive red lead to the input "IN" pin of the device. If the input pin is not easily assessable, place the leads across the input capacitor, C_{IN}.

Use the following table to diagnose and fix associated problems.

Input Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	Battery uncharged or defective	Disconnect battery and check voltage; if it reads OV, recharge battery	Replace battery if it does not charge
	No connection from battery (IN or GND line)	Disconnect battery and test for conductivity from battery connector to device input	PCB may have an open

	Input capacitor shorted to ground	Disconnect battery and check for continuity across capacitor	Bad capacitor, PCB may have short
	EN pin connected to ground	Disconnect battery and test for conductivity from EN pin to ground	EN pin needs to be tied high for normal operation
Reading < 2.8V	Low battery charge Battery defective	Disconnect battery and check voltage; if it reads below 2.8V, recharge battery	Replace battery if it does not charge
2.8V ≥ Reading ≤ 4.2V		No action	Input voltage OK, proceed to step 2
Reading ≥ 4.2V	Defective battery	Replace battery	

Step 2. Check the Inductor Signal Waveform: Using an oscilloscope or digital storage scope (DSO), probe the LX pin on the MAX38640A device. If the input pin is not easily assessable, place the probe on the inductor end cap.

If the circuit is operating correcting with a light load (i.e., less than 50mA), the waveform should appear as shown in the following figure.

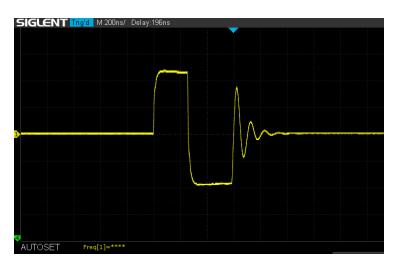


Figure 8. Typical MAX38640A VLX Waveform with Light Load

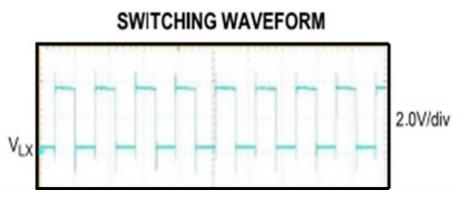


Figure 9. Typical MAX38640A VLX Waveform

The square wave amplitude should be approximately equal to the input battery voltage. The square wave floor voltage should be about 200mV to 300mV below ground (e.g., -250mV). The duty cycle is proportional to the output voltage, thus a 3.6V input battery voltage has an approximate 50% duty cycle when producing an output voltage of 1.8V. Figure 10 shows the relationship between the duty cycle and output voltage.

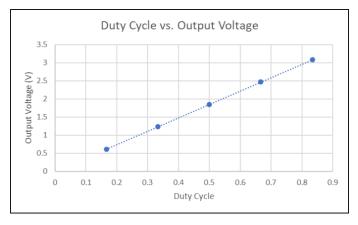


Figure 10. MAX38640A Duty Cycle Versus Output Voltage

Deviations from the ideal square wave can be used to effectively diagnose and fix many problems.

Input Waveform	Potential Cause	Action	Notes
Amplitude is not	Inductor open	Disconnect battery and	Repair PCB if
correct	IN pin open	check all connections with	needed
	EN is open or ground	DMM	
Duty Cycle is not	R _{SEL} is not the correct	Disconnect battery and	Replace resistor
correct (Does not	value (768k Ω), bad	check R _{SEL} with a DMM (R-	with correct value
correlate to the	external resistor.	measurement)	resistor
output voltage)			
	R _{SEL} pin open (V ₀ = 2.5V)	Check output for 2.5V	PCB may have an
		Disconnect battery and	open
		test for conductivity from	
		resistor to R _{SEL} pin	
	R _{SEL} pin shorted to ground	Check output for 0.8V	PCB may have
	(V ₀ = 0.8V)	Disconnect battery and	short
		measure resistance across	
		capacitor.	
Waveform distortion	Bad inductor connection	Re-connect inductor	Bad connection
Rounded rising edge		Replace inductor	can cause higher
			line resistance

Use the following table to diagnose and fix associated problems.

Step 3A. Check the Output DC Voltage: Using a digital multimeter (DMM) with an internal impedance of $1M\Omega$ or larger (e.g., Fluke 87), measure the voltage at the output of the MAX38640A device. Be sure to connect the negative black lead to ground and the positive red lead to the output "OUT" pin of the device. If the output pin is not easily assessable, place the leads across the output capacitor, C_{OUT}.

Use the following table to diagnose and fix associated problems

Output Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	No connection from	Disconnect battery and	PCB may have an open
	SMPS to COUT	test for conductivity	
		from output to Cout	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor	
Reading too low	Inductor wrong value	Disconnect battery and	
(<1.71VDC)	Inductor saturated	check for inductor	
	R _{SEL} has wrong value	and/or resistor values	
1.71V ≥ Reading ≤		No action	Operational
1.89V			
Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>1.89VDC)		check R _{SEL} value	

Step 3B. Check the Output AC Voltage: Using an oscilloscope or digital storage scope (DSO), we will now measure the output ripple (AC) by probing the OUT pin on the MAX38640A device. To measure the output and avoid RF pickup, it is recommended to use a differential probe technique.

If the circuit is operating correctly, the waveform should be a 1.8VDC output with a small ripple waveform superimposed on it. The ripple waveform should resemble that shown in the following figure:

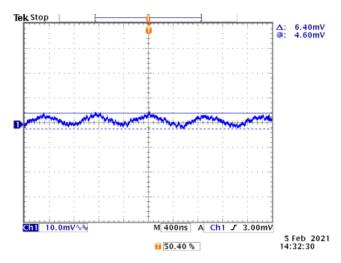


Figure 11. MAX38640A Output Ripple Waveform

Use the following table to diagnose and fix associated problems.

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high (>20mV _{PP})	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Ripple frequency does	Light load	Check load	
not match V _{LX} square			
wave frequency			
Broadband noise is too	Load too large,	Check load and	Use differential
high	environmental noise.	environmental noise	probing on output to
			reduce environmental
			noise
Transition spikes too	Load inductance,	Check line inductance,	
high (>30mV _P)	input current not	check input current with	
	adequate	scope	

Digital 1.8V SMPS Circuit Using the MAX38640A (Buck) Device

The following MAX38640A circuits (Figure 12) illustrate typical input and output power supply levels for a properly operating Switch-Mode Power Supply (SMPS) device in wearable medical/healthcare applications. As shown in Figure 12, digital multimeters (DMM) can be used to probe the input and output ports to validate the supply voltage levels. Note that power supply output levels can vary due to various factors such as:

- Discharging battery
- Changing loads (e.g., device mode changes, devices waking up from sleep mode, etc.)

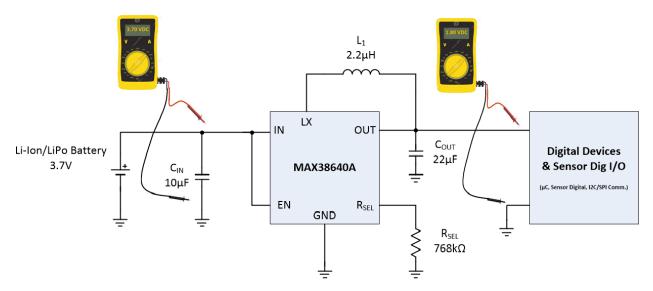


Figure 12. Digital 1.8VDC MAX38640A SMPS Circuit for Wearable Medical/Healthcare Applications

The following link can be used to obtain the MAX38640A circuit reference design files.

Design File Type	Name	Format	Link
Schematic	MAX38640A_MPS_cookbook_Apps_P1_Schematic	Multiple	Reference Design
Bill of	Build_BOM_MAX38640A_MPS_cookbook_Apps_P1	Excel	<u>Files</u>
Materials			
Layout	MAX38640A_MPS_cookbook_Apps_P1_ODB++.tgz	Multiple	

Digital 1.8V SMPS Circuit Validation Checklist

The following table can be used as a checklist to validate the operation of the digital 1.8V SMPS circuit using the MAX38640A device while connected to a load.

Step	Action	Procedure	Measurement	Need help?
1	Check input DC	Measure voltage	Reading range:	Troubleshooting
Т	power supply	across battery	2.8V to 4.2V	Instructions
2		Measure voltage	Reading range:	
Z		across C _{IN}	2.8V to 4.2V	
3	Check VOUT DC level	Measure voltage	Reading range:	
5		across C _{OUT}	1.71V to 1.89V	
4		Measure voltage	Reading range:	
4		across load	1.71V to 1.89V	
	Check Output Noise	*Use differential	Ripple Noise level	
5	Level	oscilloscope probe	should be <20mV _{PP}	
		method across C _{OUT}		

Typical Operating Characteristics

The following figures highlight the typical operating characteristics of the MAX38640A circuit under various load conditions. The test equipment used includes:

- Input Power Supply Source: B&K Precision BK1718 DC power supply
- Electronic Load: MAXREFDES1213 Smart Load using the MAX32630FTHR and MAX11311
- Benchtop DMM: B&K Precision BK2831E True RMS Bench digital multimeter

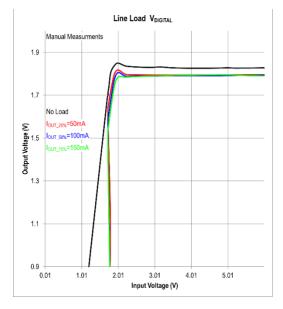


Figure 13. Line Load for the Digital MAX38640A SMPS Circuit

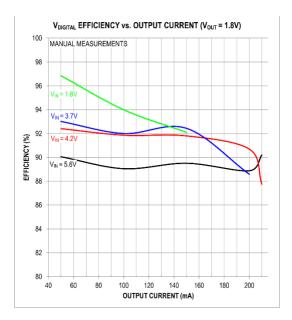


Figure 14. Efficiency of the Digital 1.8V MAX38640A SMPS Circuit

Typical Operating Characteristics

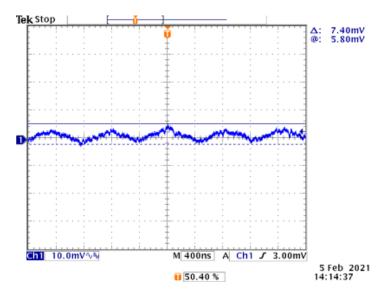


Figure 15. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

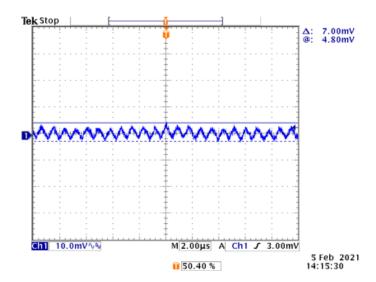


Figure 16: Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)

Troubleshooting the MAX38640A (Digital 1.8V Output) SMPS Circuit

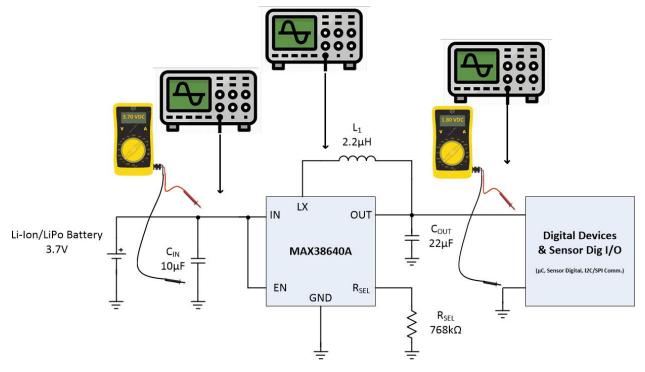


Figure 17. Troubleshooting the MAX38640A SMPS Circuit

Troubleshooting the MAX38640A SMPS Circuit:

Step 1. Check the Input Voltage: Using a digital multimeter (DMM) with an internal impedance of a $1M\Omega$ or larger (e.g., Fluke 87), measure the voltage across at the input to the MAX38640A device. Be sure to connect the negative black lead to ground and the positive red lead to the input "IN" pin of the device. If the input pin is not easily assessable, place the leads across the input capacitor, C_{IN}.

Use the following table to diagnose and fix associated problems.

Input Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	Battery uncharged or defective	Disconnect battery and check voltage; if it reads OV, recharge battery	Replace battery if it does not charge
	No connection from battery (IN or GND line)	Disconnect battery and test for conductivity from battery connector to device input	PCB may have an open

	Input capacitor shorted to ground	Disconnect battery and check for continuity across capacitor	Bad capacitor, PCB may have short
	EN pin connected to ground	Disconnect battery and test for conductivity from EN pin to ground	EN pin needs to be tied high for normal operation
Reading < 2.8V	Low battery charge Battery defective	Disconnect battery and check voltage; if it reads below 2.8V, recharge battery	Replace battery if it does not charge
2.8V ≥ Reading ≤ 4.2V		No action	Input voltage OK, proceed to step 2
Reading ≥ 4.2V	Defective battery	Replace battery	

Step 2. Check the Inductor Signal Waveform: Using an oscilloscope or digital storage scope (DSO), probe the LX pin on the MAX38640A device. If the input pin is not easily assessable, place the probe on the inductor end cap.

If the circuit is operating correcting with a light load (i.e., less than 50mA), the waveform should appear as shown in the following figure.

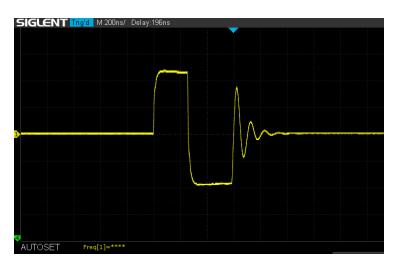


Figure 18. Typical MAX38640A VLX Waveform with Light Load

If the circuit is operating correcting with a heavy load, the waveform should be a square wave with minimal ringing on the rise and falling edges as shown in the following figure.

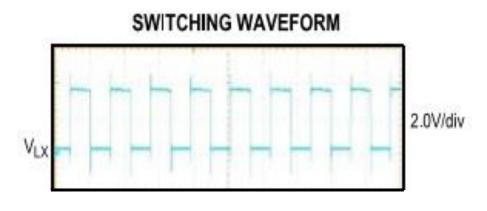


Figure 19. Typical MAX38640A VLX Waveform

The square wave amplitude should be approximately equal to the input battery voltage. The square wave floor voltage should be about 200mV to 300mV below ground (e.g., -250mV). The duty cycle is proportional to the output voltage, thus a 3.6V input battery voltage has an approximate 50% duty cycle when producing an output voltage of 1.8V. Figure 20 shows the relationship between the duty cycle and output voltage.

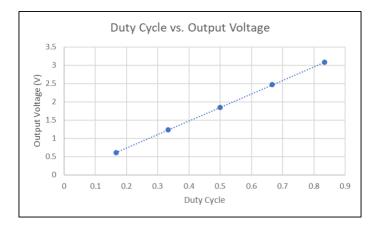


Figure 20. MAX38640A Duty Cycle Versus Output Voltage

Deviations from the ideal square wave can be used to effectively diagnose and fix many problems.

Input Waveform	Potential Cause	Action	Notes
Amplitude is not	Inductor open	Disconnect battery and	Repair PCB if
correct	IN pin open	check all connections with	needed
	EN is open or ground	DMM.	
Duty Cycle is not	R _{SEL} is not the correct	Disconnect battery and	Replace resistor
correct (Does not	value (768kΩ) <i>,</i> bad	check R _{SEL} with a DMM (R-	with correct value
correlate to the	external resistor	measurement)	resistor
output voltage)			
	R _{SEL} pin open (V _O = 2.5V)	Check output for 2.5V,	PCB may have an
		disconnect battery and	open
		test for conductivity from	
		resistor to R _{SEL} pin	
	R _{SEL} pin shorted to ground	Check output for 0.8V,	PCB may have
	(V ₀ = 0.8V)	disconnect battery and	short
		measure resistance across	
		capacitor	
Waveform distortion	Bad inductor connection	Reconnect inductor	Bad connection
Rounded rising edge		Replace inductor	can cause higher
			line resistance

Use the following table to diagnose and fix associated problems.

Step 3A. Check the Output DC Voltage: Using a digital multimeter (DMM) with an internal impedance of a 1M Ω or larger (e.g., Fluke 87), measure the voltage at the output of the MAX38640A device. Be sure to connect the negative black lead to ground and the positive red lead to the output "OUT" pin of the device. If the output pin is not easily assessable, place the leads across the output capacitor, C_{OUT}.

Use the following table to diagnose and fix associated problems.

Output Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	No connection from	Disconnect battery and	PCB may have an open
	SMPS to COUT	test for conductivity	
		from output to Cout	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor	
Reading too low	Inductor wrong value	Disconnect battery and	
(<1.71VDC)	Inductor saturated	check for inductor	
	R _{SEL} has wrong value	and/or resistor values	
1.71V ≥ Reading ≤		No action	Operational
1.89V			
Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>1.89VDC)		check R _{SEL} value	

Step 3B. Check the Output AC Voltage: Using an oscilloscope or digital storage scope (DSO), we will now measure the output ripple (AC) by probing the OUT pin on the MAX38640A device. To measure the output and avoid RF pickup, it is recommended to use a differential probe technique.

If the circuit is operating correctly, the waveform should be a 1.8VDC output with a small ripple waveform superimposed on it. The ripple waveform should resemble that shown in the following figure.

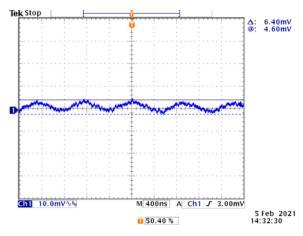


Figure 21. MAX38640A Output Ripple Waveform

Use the following table to diagnose and fix associated problems.

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high (>20mV _{PP})	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Ripple frequency does	Light load	Check load	
not match V _{LX} square			
wave frequency			
Broadband Noise is too	Load too large,	Check load and	Use differential
high	environmental noise	environmental noise	probing on output to
			reduce environmental
			noise
Transition spikes too	Load inductance,	Check line inductance,	
high (>30mV _P)	input current not	check input current with	
	adequate	scope	

Digital 1.8V SMPS Circuit Using the MAX17220 (Boost) Device

The following MAX17220 circuit (Figure 12) illustrate typical input and output power supply levels for a properly operating Switch-Mode Power Supply (SMPS) device in wearable medical/healthcare applications. As shown in Figure 22, digital multimeters (DMM) can be used to probe the input and output ports to validate the supply voltage levels. Note that power supply output levels can vary due to various factors such as:

- Discharging battery
- Changing loads (e.g., device mode changes, devices waking up from sleep mode, etc.)

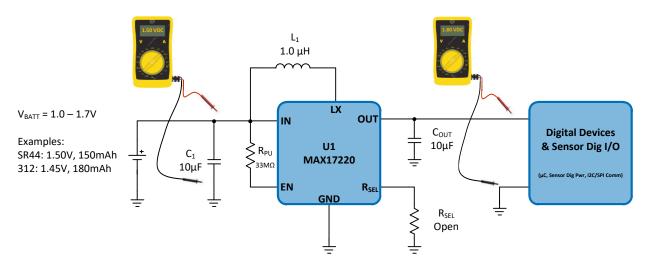


Figure 22. Digital 1.8VDC MAX17220 SMPS Circuit for Wearable Medical/Healthcare Applications

The fellowing link can be used to	abtain the NANY17220 DC Madula	strevit reference destan files
The following link can be used to	obtain the MAX1/220 PS Module	circuit reference design mes.

Design File Type	Name	Format	Link
Schematic	Cookbook_MAX17220_DB_Apps_P1_Schematic	Multiple	Reference Design
Bill of	Build_BOM_Cookbook_MAX17220_DB_Apps_P1	Excel	<u>Files</u>
Materials			
Layout	Cookbook_MAX17220_DB_Apps_P1_ODB++.tgz	Multiple	

Digital 1.8V SMPS Circuit Validation Checklist

The following table can be used as a checklist to validate operation of the digital 1.8V SMPS circuit using the MAX17220 device while connected to a biosensing circuit load.

Step	Action	Procedure	Measurement	Need Help?
1	Check input DC	Measure voltage	Reading range:	<u>Troubleshooting</u>
	power supply	across Battery		Instructions
	SR44: Ag Oxide Batt		1.2V – 1.6V	
	312: Zinc Air Batt		1.3V – 1.7V	
2	Check input DC	Measure voltage	Reading range:	
	power supply	across C ₁		
	SR44: Ag Oxide Batt		1.2V – 1.6V	
	312: Zinc Air Batt		1.3V – 1.7V	
3	Check Vout DC level	Measure voltage	Reading range:	
		across Cout	1.71V – 1.89V	
4		Measure voltage	Reading range:	
		across load	1.71V – 1.89V	
5	Check Output Noise	*Use differential	Ripple Noise level	
	Level	oscilloscope probe	should be < 30mVpp	
		method across		
		Cout		

Typical Operating Characteristics

The following figures highlight the typical operating characteristics of the MAX17220 circuit under various load conditions. The test equipment used includes:

- Input Power Supply Source: B&K Precision BK1718 DC power supply
- Electronic Load: MAXREFDES1213 Smart Load using the MAX32630FTHR and MAX11311
- Benchtop DMM: B&K Precision BK2831E True RMS Bench digital multimeter

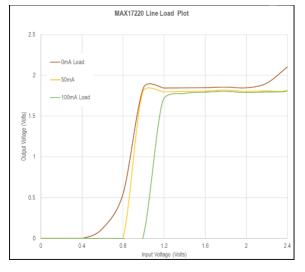


Figure 23. Line Load for the Digital MAX17220 SMPS Circuit

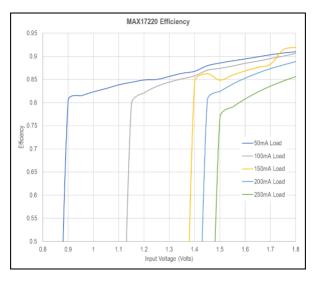


Figure 24. Efficiency of the Digital 1.8V MAX17220 SMPS Circuit

Typical Operating Characteristics

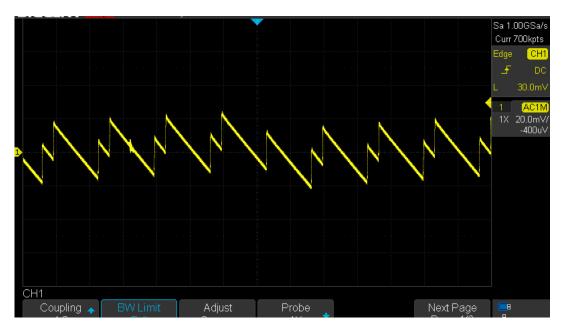


Figure 25. Typical Output Ripple Characteristic ($V_{IN} = 1.5VDC$, $I_S = 2mA$)

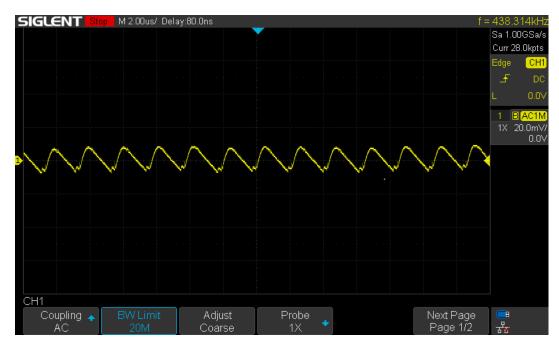


Figure 26: Typical Output Ripple Voltage ($V_{IN} = 1.5VVDC$, $I_S = 45mA$)

L_1 1.0 µH LX $V_{BATT} = 1.0 - 1.7V$ IN OUT $\mathbf{C}_{\mathrm{OUT}}$ Examples: **U1** 10µF MAX30001 SR44: 1.50V, 150mAh C_1 MAX17220 ECG AFE 10µF 312: 1.45V, 180mAh ΕN $\mathbf{R}_{\mathsf{SEL}}$ GND

Troubleshooting the MAX17220 (Digital 1.8V Output) SMPS Circuit

Figure 27: Troubleshooting the MAX17220 SMPS Circuit

 \mathbf{R}_{SEL}

Open

÷

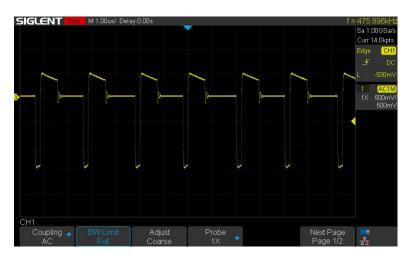
Troubleshooting the MAX17220 SMPS Circuit:

Step 1 – Check the Input Voltage: Using a digital multimeter (DMM) with an internal impedance of a 1Mohm or larger (e.g., Fluke 87), measure the voltage across at the input to the MAX17220 device. Be sure to connect the negative "black" lead to ground and the positive "red" lead to the input "IN" pin of the device. If the input pin is not easily assessable, place the leads across the input capacitor, C₁.

Use the following table to diagnose and fix associated problems:

Input Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	Battery uncharged. Battery defective.	Disconnect battery and check voltage. If it reads 0V, recharge battery.	Replace battery if it doesn't charge.
	No connection from battery (IN or GND line)	Disconnect battery and test for conductivity from battery connector to device input.	PCB may have an open.
	Input capacitor shorted to ground	Disconnect battery and check for continuity across capacitor.	Bad capacitor. PCB may have short.

	EN pin connected to ground	Disconnect battery and test for conductivity from EN pin to ground.	EN pin needs to be tied high for normal operation.
Zinc Air Battery: Reading < 1.2V Ag Oxide Battery: Reading < 1.3V	Low battery charge Battery defective	Disconnect battery and check voltage. If it reads below min V- Level, replace battery.	
Zinc Air Battery: 1.2V ≥ Reading ≤ 1.7V Ag Oxide Battery: 1.3V ≥ Reading ≤ 1.6V		No action.	Input voltage OK, proceed to step 2.
Zinc Air Battery: Reading ≥ 1.7V Ag Oxide Battery: Reading ≥ 1.6V	Defective battery	Replace battery and retest.	


Step 2 – Check the Inductor Signal Waveform: Using an oscilloscope or digital storage scope (DSO), probe the LX pin on the MAX17220 device. If the input pin is not easily assessable, place the probe on the inductor end cap.

If the circuit is operating correcting with a light load the waveform should appear as shown in the following figure:

Figure 28: Typical MAX17220 V_{LX} Waveform with 2mA Load

As the MAX17220 employs pulse-frequency-modulation (PFM), the circuit will operate at higher repetition rates (i.e., higher frequency) under heavier loads with similar V_{LX} pulse waveforms. The figure below demonstrates this with a 45mA current load:

Figure 29: Typical MAX17220 V_{LX} Waveform with 45mA Load.

The typical V_{LX} peak-to-peak pulse amplitude should be approximately 2V. The frequency is proportional to the output load current. The figure below shows the relationship between the typical V_{LX} waveform frequency and output load current.

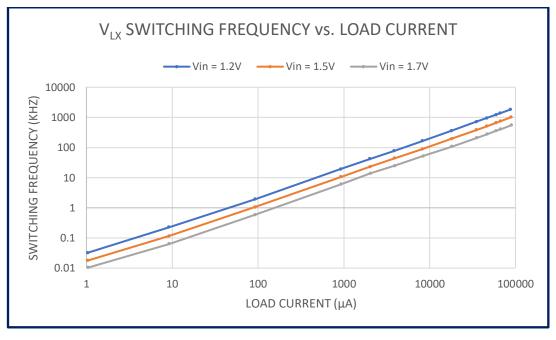


Figure 30: MAX17220 V_{LX} Frequency vs. Load Current

Deviations from the frequency and/or pulse waveform shape can be used to effectively diagnose and fix many problems.

Input Waveform	Potential Cause	Action	Notes
No pulses	Inductor open.	Disconnect battery and	Repair PCB if
	C _{OUT} is open	check all connections with	needed.
	IN pin open	DMM.	
Pulse amplitudes	Inductor wrong value	Disconnect battery and	Replace
(Neg & Pos Pulses)	Inductor saturated	check for inductor and	components as
are not correct	C _{OUT} value is too low	output capacitor values.	needed.
Frequency is not	Inductor wrong value	Disconnect battery and	Replace
correct (Doesn't	Inductor saturated	check for inductor, output	components as
correlate to the	C _{OUT} value is too low	capacitor values. Check	needed.
output load)	R _{SEL} is not open	that R _{SEL} is open	
Waveform distortion	Inductor wrong value	Disconnect battery and	Bad connection
(Deviation from	Inductor saturated	check for inductor and	can cause higher
waveshape in Figure	Poor inductor connection	input & output capacitor	line resistance.
2 & 3)	C _{OUT} value is too low	values.	Repair PCB if
	C _{IN} value too low		needed.

Use the following table to diagnose and fix associated problems:

Step 3A – Check the Output DC Voltage: Using a digital multimeter (DMM) with an internal impedance of a 1Mohm or larger (e.g., Fluke 87), measure the voltage at the output of the MAX17220 device. Be sure to connect the negative "black" lead to ground and the positive "red" lead to the output "OUT" pin of the device. If the output pin is not easily assessable, place the leads across the output capacitor, C_{OUT}.

Use the following table to diagnose and fix associated problems:

Output Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	No connection from	Disconnect battery and	PCB may have an open.
	SMPS to COUT	test for conductivity	
		from output to C _{OUT}	
	Output capacitor	Disconnect battery and	PCB may have short.
	shorted to ground	check for continuity	
		across capacitor.	
Reading too low	Inductor wrong value	Disconnect battery and	
(< 1.71 VDC)	Inductor saturated	check for inductor and	
	Battery voltage low	EN connection. Check	
		battery.	
1.71V ≥ Reading ≤ 1.89		No action.	Operational.
Reading too high	Inductor wrong value	Disconnect battery and	Battery voltage too
(> 1.89 VDC)	Inductor saturated	check for inductor and	high (Go back to Step
	R _{SEL} installed (should be	EN connection. Check	1).
	open).	battery.	

Step 3B – Check the Output AC Voltage: Using an oscilloscope or digital storage scope (DSO), we will now measure the output ripple (AC) by probing the OUT pin on the MAX17220 device. To properly measure the output, avoiding RF pickup, it is recommended that a differential technique be employed.

If the circuit is operating correctly, the waveform should be a 1.8VDC output with a small ripple waveform superimposed on it. The ripple waveform should resemble that shown in the following figure:

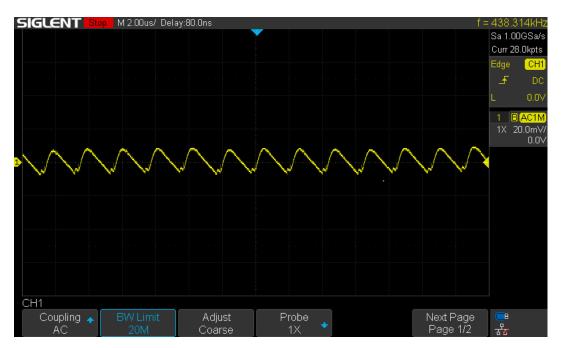


Figure 31: MAX17220 Output Ripple Waveform with 45mA Load Current

Use the following table to diagnose and fix associated problems:

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	C _{OUT} is too low.	Disconnect battery and	
high (> 30mVpp)	Defective output	check all connections	
	capacitor	with DMM ; Measure	
		capacitor value	
Broadband Noise is too	Load too large;	Check load and	Use differential
high	environmental noise.	environmental noise.	probing on output to
			reduce environmental
			noise.
Transition Spikes too	Load inductance;	Check line inductance;	
high (> 30mVp)	Input current not	Check input current with	
	adequate	scope.	

Analog 5V SMPS Circuit Using the MAX20343H (Boost) Device

The following 5VDC circuit illustrates typical input and output power supply levels for a properly operating Switch-Mode Power Supply (SMPS) device in wearable medical/healthcare applications. Designed for associated line and load variations, the MAX20343H power supply can provide an effective solution without optical biosensor SNR degradation.

As shown in Figure 22, digital multimeters (DMM) can be used to probe the input and output ports to validate the supply voltage levels. Note that power supply output levels can vary due to various factors such as:

- Discharging battery
- Changing loads (e.g., device mode changes, devices waking up from sleep mode, etc.)

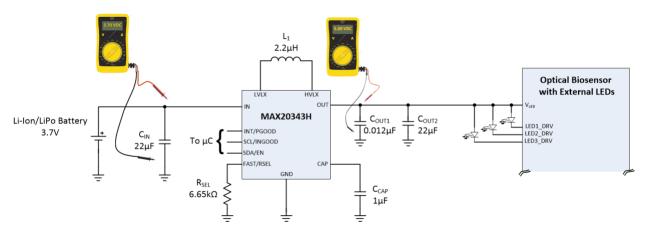


Figure 32. Analog 5VDC MAX20343H SMPS Circuit for Wearable Medical Applications

The following link	can be used to obt	ain the MAX20343F	circuit reference design files.

Design File Type	Name	Format	Link
Schematic	MAX20343HA_MPS_cookbook_Apps_P1_Schematic	Multiple	Reference Design
Bill of	Build_BOM_MAX20343H_MPS_cookbook_Apps_P1	Excel	<u>Files</u>
Materials			
Layout	MAX20343H_MPS_cookbook_Apps_P1_ODB++.tgz	Multiple	

Analog 5.0V SMPS Circuit Validation Checklist

The following table can be used as a checklist to validate operation of the analog 5.0V SMPS circuit using the MAX38640A device while connected to a load.

Step	Action	Procedure	Measurement	Need help?
1	Check input DC	Measure voltage	Reading range:	Troubleshooting
T	power supply	across battery	2.8V to 4.2V	Instructions
2	Check input DC	Measure voltage	Reading range:	
Z	power supply	across C _{IN}	2.8V to 4.2V	
3	Check VOUT DC level	Measure voltage	Reading range:	
5		across Cout	4.75V to 5.25V	
4	Check VOUT DC level	Measure voltage	Reading range:	
4		across load	4.75V to 5.25V	
	Check Output Noise	*Use differential	Ripple Noise level	
5	Level	oscilloscope probe	should be <20mV _{PP}	
5		method across		
		Соит		

The following figures highlight the typical operating characteristics of the MAX20343H circuit under various load conditions. The test equipment used includes:

- Input Power Supply Source: B&K Precision BK1718 DC power supply
- Electronic Load: MAXREFDES1213 Smart Load using the MAX32630FTHR and MAX11311
- Benchtop DMM: B&K Precision BK2831E True RMS Bench digital multimeter

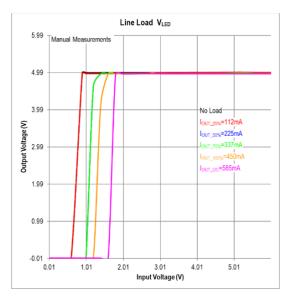


Figure 33. Line Load of the Analog 5V MAX20343H SMPS Circuit

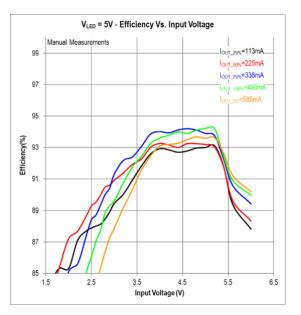


Figure 34. Efficiency of the Analog 5V MAX20343H SMPS Circuit

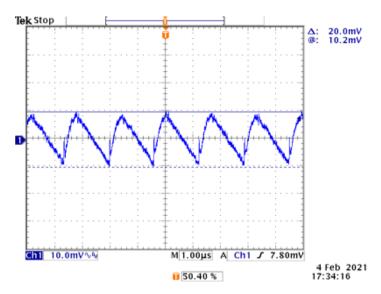


Figure 35. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

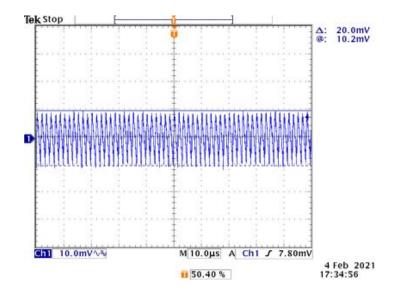


Figure 36. Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)

Troubleshooting the MAX20343H (5V Output) SMPS Circuit

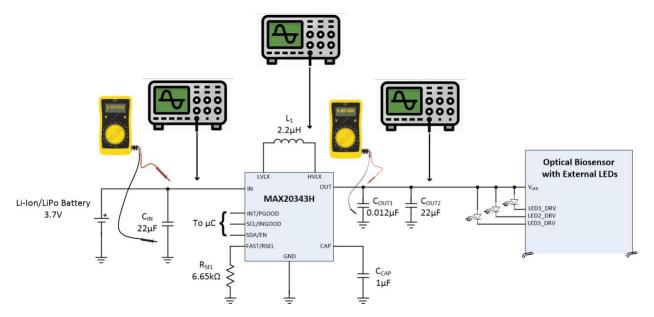


Figure 37. Troubleshooting the MAX20343H Circuit

Troubleshooting the MAX20343H SMPS Circuit:

Step 1. Check the Input Voltage: Using a digital multimeter (DMM) with an internal impedance of a $1M\Omega$ or larger (e.g., Fluke 87), measure the voltage across at the input to the MAX20343H device. Be sure to connect the negative black lead to ground and the positive red lead to the input "IN" pin of the device. If the input pin is not easily assessable, place the leads across the input capacitor, C_{IN}.

Input Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	Battery uncharged	Disconnect battery and	Replace battery if it
	or defective	check voltage; if it	does not charge
		reads OV, recharge	
		battery	
	No connection from	Disconnect battery and	PCB may have an open
	battery (IN or GND line)	test for conductivity	
		from battery connector	
		to device input	
	Input capacitor shorted	Disconnect battery and	PCB may have short
	to ground	check for continuity	
		across capacitor	
	EN pin (SDA/EN)	Disconnect battery and	EN pin needs to be tied
	connected to ground	test for conductivity	high for normal
		from battery connector	operation
		to device input	

Reading < 2.8V	Low battery charge Battery defective	Disconnect battery and check voltage; if it reads below 2.8V, recharge battery	Replace battery if it does not charge
2.8V ≥ Reading ≤ 4.2V		No action	Input voltage OK, proceed to step 2
Reading ≥ 4.2V	Defective battery	Replace battery	

Step 2. Check the Inductor Signal Waveform: Using an oscilloscope or digital storage scope (DSO), probe the HVLX pin on the MAX20343H device. If the input pin is not easily assessable, place the probe on the inductor end cap.

If the circuit is operating correcting, the waveform should be a pulse wave with minimal ringing on the rise and falling edges as shown in the following figure.

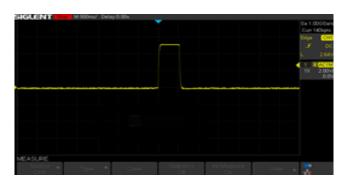


Figure 38. Typical MAX20343H HVLX Waveform with Light Load (10mA)

The 500ns pulse wave amplitude should be approximately equal to the input battery voltage. The pulse wave floor voltage should be within several 100mV of ground. The output frequency and duty cycle of the pulse wave is proportional to the load current. Figures 29 and 30 show the output wave and signal frequency under different load conditions.

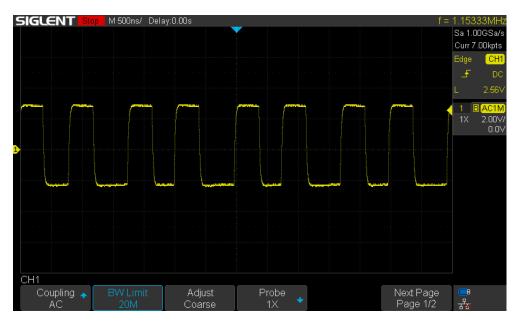


Figure 39. Typical MAX20343H HVLX Waveform with 125mA Load

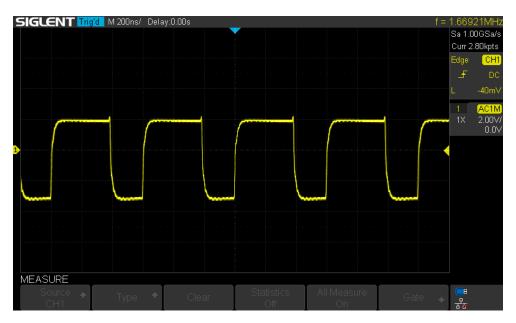


Figure 40. Typical MAX20343H HVLX Waveform with 246mA Load

Deviations from the ideal square wave can be used to effectively diagnose and fix many problems.

Input Waveform	Potential Cause	Action	Notes
Amplitude is not	Inductor open	Disconnect battery and	Repair PCB if needed
correct	IN pin open	check all connections with	
	EN is open or ground	DMM	
Duty Cycle is not	R _{SEL} is not the correct	Disconnect battery and	Replace resistor with
correct (Does not	value (6.65kΩ), bad	check R _{SEL} with a DMM (R-	correct value resistor
correlate to the output	external resistor.	measurement)	
voltage)			
	R _{SEL} pin open (V _O =	Check output for 3.3V;	PCB may have an
	3.3V)	disconnect battery and	open
		test for conductivity from	
		resistor to R _{SEL} pin	
	R _{SEL} pin shorted to	Check output for 5.5V;	PCB may have short
	ground ($V_0 = 5.5V$)	disconnect battery and	
		measure resistance across	
		capacitor	
Waveform distortion	Bad inductor	Reconnect inductor	Bad connection can
Rounded rising edge	connection	Replace inductor	cause higher line
			resistance

Step 3A. Check the Output DC Voltage: Using a digital multimeter (DMM) with an internal impedance of a 1M Ω or larger (e.g., Fluke 87), measure the voltage at the output of the MAX20343H device. Be sure to connect the negative black lead to ground and the positive red lead to the output "OUT" pin of the device. If the output pin is not easily assessable, place the leads across the output capacitor, C_{OUT}.

Output Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	No connection from	Disconnect battery and	PCB may have an open
	SMPS to COUT	test for conductivity	
		from output to C _{OUT}	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor	
Reading too low	Inductor wrong value	Disconnect battery and	
(<4.75VDC)	Inductor saturated	check for inductor	
	R _{SEL} has wrong value	and/or resistor values	
4.75V ≥ Reading ≤ 5.25V		No action	Operational
Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>5.25VDC)		check R _{SEL} value	

Use the following table to diagnose and fix associated problems:

Step 3B. Check the Output AC Voltage: Using an oscilloscope or digital storage scope (DSO), measure the output ripple (AC) by probing the OUT pin on the MAX20343H device. To measure the output and avoid RF pickup, it is recommended to use a differential probe technique.

If the circuit is operating correctly, the waveform should be a 1.8VDC output with a small ripple waveform superimposed on it. The ripple waveform should look like that shown in the following figure.

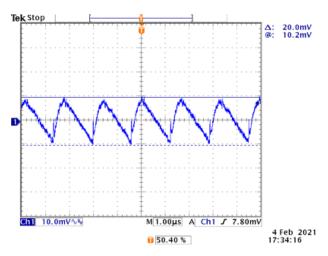


Figure 41. MAX20343H (5V) Output Ripple Waveform

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Ripple frequency does	Light load	Check load	
not match V _{HVLX} pulse			
wave frequency			
Broadband noise is too	Load too large,	Check load and	Use differential
high	environmental noise	environmental noise	probing on output to
			reduce environmental
			noise
Transition spikes too	Load inductance,	Check line inductance,	
high	input current not	check input current with	
	adequate	scope.	

Analog 1.8V/Digital 1.8V/Analog 5.0V SMPS Circuit Using the MAX77642 Device

The following MAX77642 circuit illustrates typical input and output power supply levels for a properly operating Switch-Mode Power Supply (SMPS) device in wearable medical/healthcare applications. As shown in Figure 32, digital multimeters (DMM) can be used to probe the input and output ports to validate the supply voltage levels. Note that power supply output levels can vary due to various factors such as:

- Discharging battery
- Changing loads (e.g., device mode changes, devices waking up from sleep mode, etc.)

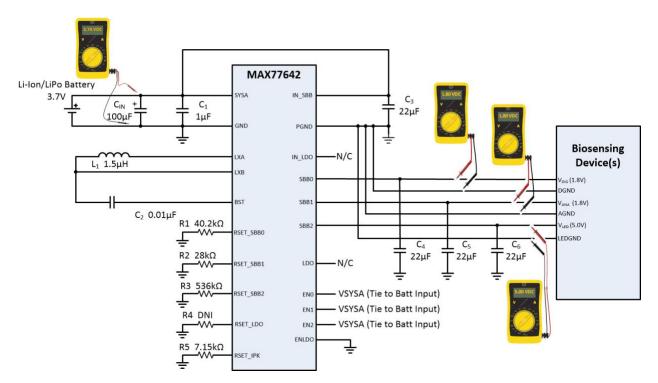


Figure 42. Analog 1.8V/Digital 1.8V/Analog 5.0V MAX77642 SMPS Circuit for Wearable Medical Applications

The following link can be used to obtain the MAX77642 circuit reference design files.

Design File Type	Name	Format	Link
Schematic	MAX77642_MPS_cookbook_Apps_P1_Schematic	Multiple	Reference Design
Bill of	Build_BOM_MAX77642_MPS_cookbook_Apps_P1	Excel	<u>Files</u>
Materials			
Layout	MAX77642_MPS_cookbook_Apps_P1_ODB++.tgz	Multiple	

MAX77642 1.8V/1.8V/5.0V SMPS Circuit Validation Checklist

The following table can be used as a checklist to validate operation of the 1.8V/1.8V/5.0V SMPS circuit using the MAX77642 device while connected to loads.

Step	Action	Procedure	Measurement	Need help?
1	Check input DC	Measure voltage	Reading range:	Troubleshooting
	power supply	across Battery	2.8V to 4.2V	Instructions
2	Check input DC	Measure voltage	Reading range:	
	power supply	across C _{IN}	2.8V to 4.2V	-
3	Check VOUT DC level	Measure SBB1	Analog 1.8V Reading	
		output DC voltage	range: 1.71V to 1.89V	
		with reference to		
		GND		
4		Measure SBB0	Digital 1.8V Reading	
		output DC voltage	range: 1.71V to 1.89V	
		with reference to		
		GND		
5		Measure SBB2	Analog 5V Reading	
		output DC voltage	range: 4.75V to 5.25V	
		with reference to		
		GND		-
6	Check Analog 1.8V	*Use differential	Ripple Noise level	
	Output Noise Level	oscilloscope probe	should be $<20mV_{PP}$	
		method across C ₅		-
			Switch spikes should be	
			<30mV _P	-
7	Check Digital 1.8V	*Use differential	Ripple Noise level	
	Output Noise Level	oscilloscope probe	should be $<20mV_{PP}$	
		method across C ₄		-
			Switch spikes should be	
			<30mV _P	
8	Check Analog 5.0V	*Use differential	Ripple Noise level	
	Output Noise Level	oscilloscope probe	should be $<20mV_{PP}$	
		method across C ₆		
			Switch spikes should be	
			<30mV _P	

The following figures highlight the typical operating characteristics of the MAX77642 circuit under various load conditions. The test equipment used includes:

- Input Power Supply Source: B&K Precision BK1718 DC power supply
- Electronic Load: MAXREFDES1213 Smart Load using the MAX32630FTHR and MAX11311
- Benchtop DMM: B&K Precision BK2831E True RMS Bench digital multimeter

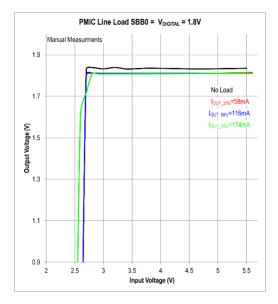


Figure 43. Line Load of the Digital 1.8V MAX77642 SMPS Circuit

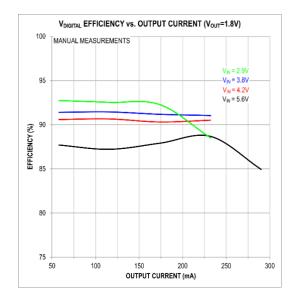


Figure 44. Efficiency of the Digital 1.8V MAX77642 SMPS Circuit

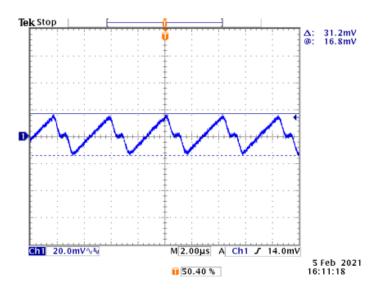


Figure 45. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

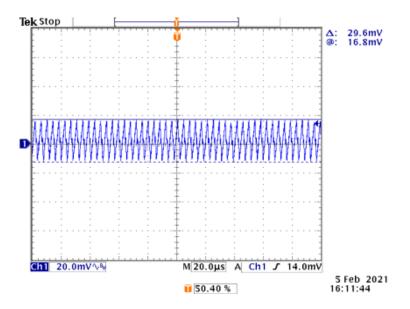


Figure 46. Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)

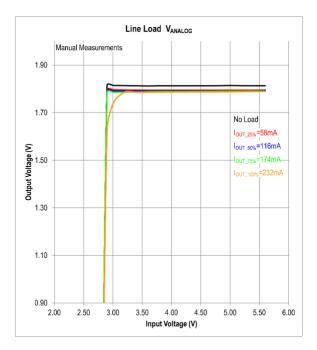


Figure 47. Line Load of the Analog 1.8V MAX77642 SMPS Circuit

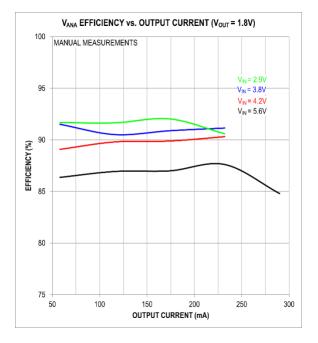


Figure 48. Efficiency of the Analog 1.8V MAX77642 SMPS Circuit

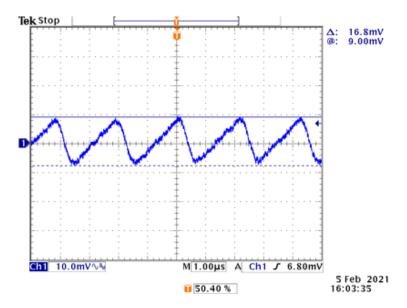


Figure 49. Typical Output Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

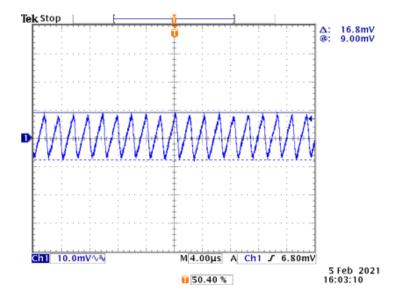


Figure 50. Typical Output Ripple Voltage (V_{IN} = 4.2VDC, I_S = 100mA)

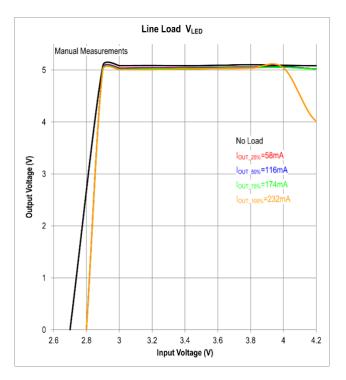


Figure 51. Line Load of the Analog 5V MAX77642 SMPS Circuit

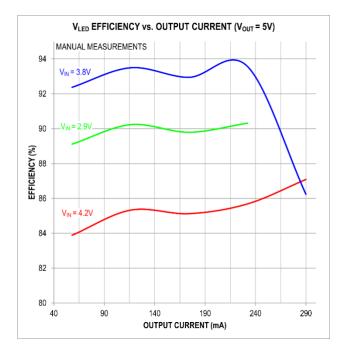


Figure 52. Efficiency of the Analog 5V MAX77642 SMPS Circuit

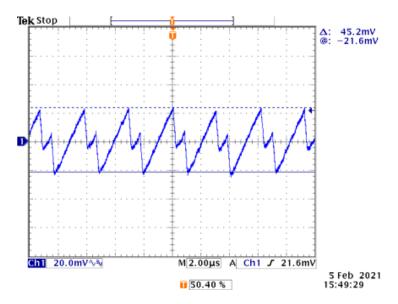


Figure 53. Typical Out Ripple Characteristic (V_{IN} = 4.2VDC, I_S = 100mA)

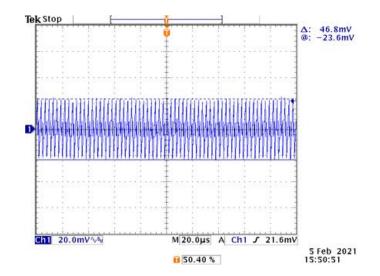
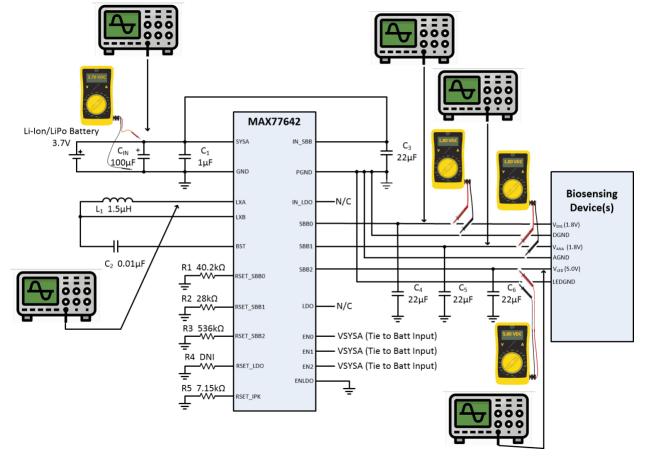



Figure 54. Typical Output Ripple Voltage (V_{IN} = 4.2V, I_S = 100mA)

Troubleshooting the MAX77642 (1.8V/1.8V/5V Output) SMPS Circuit

Figure 55. Troubleshooting the MAX77642 SMPS Circuit

Troubleshooting the MAX77642 SMPS Circuit:

Step 1. Check the Input Voltage: Using a digital multimeter (DMM) with an internal impedance of a $1M\Omega$ or larger (e.g., Fluke 87), measure the voltage across at the input to the MAX77642 device. Be sure to connect the negative black lead to ground and the positive red lead to the input "IN" pin of the device. If the input pin is not easily assessable, place the leads across the input capacitor, C_{IN}.

Input Voltage Reading	Potential Cause	Action	Notes
Zero Volts/No Reading	Battery uncharged	Disconnect battery and	Replace battery if it
	or defective	check voltage; if it	does not charge
		reads 0V, recharge	
		battery	
	No connection from	Disconnect battery and	PCB may have an open
	battery (IN or GND line)	test for conductivity	
		from battery connector	
		to device input	

	Input capacitor shorted to ground	Disconnect battery and check for continuity across capacitor	PCB may have short
Reading < 2.8VDC	Low battery charge Battery defective	Disconnect battery and check voltage; if it reads below 2.8V, recharge battery	Replace battery if it does not charge
2.8VDC ≥ Reading ≤ 4.2VDC		No action	Operational
Reading ≥ 4.2VDC	Defective battery	Replace battery	

Step 2. Check the Inductor Signal Waveform: Using an oscilloscope or digital storage scope (DSO), probe the LXA pin on the MAX77642 device. If the input pin is not easily assessable, place the probe on the (LXA) inductor end cap.

If the circuit is operating correcting, the waveform should be a series of pulse waves wave with minimal ringing on the rise and falling edges as shown in the following figure.

Figure 56. Typical MAX77642 LXA Waveform (SSB0 & SSB1 I_{OUT} = 1.2mA; SSB2 I_{OUT} = 126.1mA)

The pulse waveforms demonstrate the time multiplexing of the of three switch-mode power supplies sharing a single inductor (A.K.A. SIMO Power Supply Device).

Deviations from the ideal series of pulse waves can be used to effectively diagnose and fix many problems.

Input Waveform	Potential Cause	Action	Notes
Amplitude is not	Inductor open,	Disconnect battery and	Repair PCB if needed
correct	IN pin open	check all connections with	
		DMM	
Duty Cycle is not			
correct (missing			
pulses)			
SSB0 Pulse Missing	EN0 shorted to GND	Check SSB0 Output for 0V.	PCB may have short
		Disconnect battery and	
		test for conductivity from	
		ENO Pin to GND.	
SSB1 Pulse Missing	EN1 shorted to GND	Check SSB1 Output for OV.	PCB may have short
		Disconnect battery and	
		test for conductivity from	
CCD2 Dulas Missing		ENO Pin to GND.	DCD was a basis about
SSB2 Pulse Missing	EN2 shorted to GND	Check SSB2 Output for OV;	PCB may have short
		disconnect battery and test for conductivity from	
		ENO Pin to GND	
Duty Cycle is not	Output Voltage Select	Identify SSBx channel	
correct (Pulse Widths	Resistors, defective	associated with incorrect	
not correct)	device	PW and follow associated	
not concety	ucvice	steps below	
SSB0 PW Incorrect	RSET_SSB0 shorted to	Disconnect battery and	Bad/wrong resistor,
	GND (SSB0 Vo = 0.5V)	test for $40.2k\Omega$ to GND	PCB may have short
	RSET_SSB0 pin open	Disconnect battery and	PCB may have an
	(SSB0 Vo = 5.2V)	test for conductivity from	open, bad solder
		resistor to RSET_SSB0 pin.	connection
	Wrong RSET_SSB0	Disconnect battery and	Bad/wrong resistor
	resistor value	test for 40.2k Ω to GND.	installed
SSB1 PW Incorrect	RSET_SSB1 shorted to	Disconnect battery and	Bad (shorted)
	GND (SSB1 Vo = 0.5V)	test for $28k\Omega$ to GND.	resistor, PCB may
			have short
	RSET_SSB0 pin open	Disconnect battery and	PCB may have an
	(SSB1 Vo = 5.2V)	test for conductivity from	open, bad solder
		resistor to RSET_SSB1 pin.	connection
	Wrong RSET_SSB0	Disconnect battery and	Bad/wrong resistor
	resistor value	test for 28kΩ to GND.	installed
SSB2 Pulse Missing	RSET_SSB2 shorted to	Disconnect battery and	Bad (shorted)
	GND (SSB2 Vo = 0.5V)	test for 536k Ω to GND.	resistor, PCB may
			have short
	RSET_SSB2 pin open	Disconnect battery and	PCB may have an
	(SSB2 Vo = 5.5V)	test for conductivity from	open, bad solder
		resistor to RSET_SSB2 pin	connection

	Wrong RSET_SSB2 resistor value	Disconnect battery and test for 536kΩ to GND	Bad/wrong resistor installed
Waveform distortion Rounded rising edge	Bad inductor connection	Reconnect or replace inductor	Bad connection can cause higher line
			resistance

Step 3A. Check the Output DC Voltage: Using a digital multimeter (DMM) with an internal impedance of a 1M Ω or larger (e.g., Fluke 87), measure the voltage at the three outputs of the MAX77642 device. Be sure to connect the negative black lead to ground and the positive red lead to the associated SSBx channel output "OUT" pin of the device. If the output pin is not easily assessable, place the leads across the associated output capacitor, C_{OUT}.

Use the following table to diagnose and fix associated SSB0 (1.8VDC) output problems:

Output Voltage Reading	Potential Cause	Action	Notes
SSB0: Zero Volts/No	No connection from	Disconnect battery and	PCB may have an open
Reading	SSB0 to COUT	test for conductivity	
		from output to COUT	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor	
SSBO: Reading too low	Inductor wrong value	Disconnect battery and	
(<1.71VDC)	Inductor saturated	check for inductor	
	RSET_SSB0 has wrong	and/or resistor values	
	value		
1.71V ≥ Reading ≤		No action	Operational
1.89V			
Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>1.89VDC)		check R _{SEL} value	

Use the following table to diagnose and fix associated SSB1 (1.8VDC) output problems.

Output Voltage Reading	Potential Cause	Action	Notes
SSB1: Zero Volts/No	No connection from	Disconnect battery and	PCB may have an open
Reading	SSB0 to COUT	test for conductivity	
		from output to COUT	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor	
SSB1: Reading too low	Inductor wrong value	Disconnect battery and	
(<1.71VDC)	Inductor saturated	check for inductor	
	RSET_SSB1 has wrong	and/or resistor values	
	value		
1.71V ≥ Reading ≤		No action	Operational
1.89V			
SSB1 Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>1.89VDC)		check R _{SEL} value	

Use the following table to diagnose and fix associated SSB2 (5.0VDC) output problems.

Output Voltage Reading	Potential Cause	Action	Notes
SSB2: Zero Volts/No	No connection from	Disconnect battery and	PCB may have an open
Reading	SSB0 to COUT	test for conductivity	
		from output to C _{OUT}	
	Output capacitor	Disconnect battery and	PCB may have short
	shorted to ground	check for continuity	
		across capacitor.	
SSB2: Reading too low	Inductor wrong value	Disconnect battery and	
(<4.75VDC)	Inductor saturated	check for inductor	
	RSET_SSB2 has wrong	and/or resistor values	
	value		
4.75V ≥ Reading ≤		No action	Operational
5.25V			
SSB1 Reading too high	R _{SEL} has wrong value	Disconnect battery and	
(>5.259VDC)		check R _{SEL} value	

Step 3B. Check the Output AC Voltage: Using an oscilloscope or digital storage scope (DSO), measure the output ripple (AC) by probing the three outputs of the MAX77642 device. To measure the output and avoid RF pickup, it is recommended to use a differential probe technique.

If the circuit is operating correctly, the SSBO waveform should be a 1.8VDC (digital) output with a small ripple waveform superimposed on it. The ripple waveform should look like that shown in the following figure.

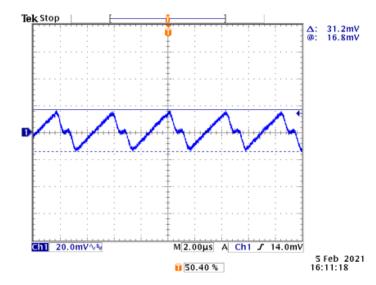


Figure 57. MAX77642 SSB0 (Dig 1.8V) Ripple Waveform (V_{IN} = 4.2V, I_{OUT} = 100mA)

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Broadband Noise is too	Load too large,	Check load and	Use differential
high	environmental noise	environmental noise	probing on output to
			reduce environmental
			noise
Transition Spikes too	Load inductance too	Check line inductance,	
high	large, input current	check input current with	
	not adequate	scope.	

If the circuit is operating correctly, the SSB1 waveform should be a 1.8VDC (analog) output with a small ripple waveform superimposed on it. The ripple waveform should look like that shown in the following figure.

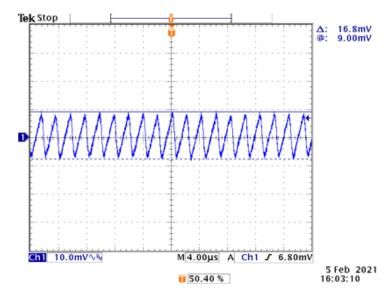


Figure 58. MAX77642 SSB1 (Analog 1.8V) Ripple Waveform (V_{IN} = 4.2V, I_{OUT} = 100mA)

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Broadband Noise is too	Load too large,	Check load and	Use differential
high	environmental noise	environmental noise	probing on output to
			reduce environmental
			noise
Transition Spikes too	Load inductance too	Check line inductance,	
high	large, input current	check input current with	
	not adequate	scope	

If the circuit is operating correctly, the SSB2 waveform should be a 5.0VDC (for LEDs) output with a small ripple waveform superimposed on it. The ripple waveform should look like that shown in the following figure.



Figure 59. MAX77642 SSB2 (5.0V) Ripple Waveform (V_{IN} = 4.2V, I_{OUT} = 100mA)

Input Waveform	Potential Cause	Action	Notes
Ripple amplitude is too	Wrong capacitor value,	Disconnect battery and	
high	defective capacitor	check all connections	
		with DMM, measure	
		capacitor value	
Broadband Noise is too	Load too large,	Check load and	Use differential
high	environmental noise	environmental noise	probing on output to
			reduce environmental
			noise
Transition Spikes too	Load inductance too	Check line inductance,	
high	large, input current	check input current with	
	not adequate	scope	

System Integration Guidelines

When integrating the SMPS circuits with biosensor devices, a "Star" power supply routing configuration should be implemented. See Figure 50 for an example of this topology type.

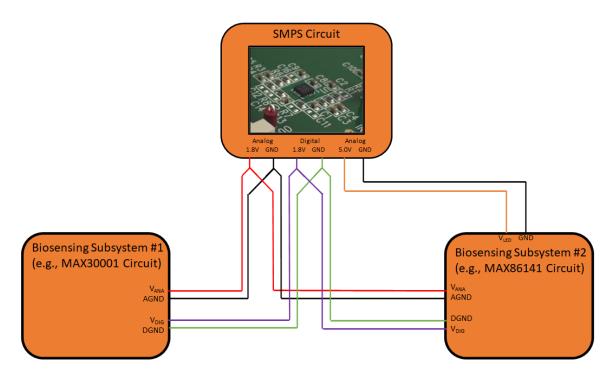


Figure 60. Power Supply "Star" Routing Topology

Along with the implementation of this power connection scheme, the following requirements should be met as well:

- Design the power and return line trace geometry for the required load current
- Route power and return lines as a parallel pair to each biosensing subsystem
- Avoid routing the power pair over any ground planes, remove ground plane area if needed
- Keep the digital power line pair separated from the analog power line pair (or route a separate ground shield line between the pair)
- Do not route the analog power line pair near any noise producing sources such as high frequency signal lines, antennas, etc.
- Avoid ground loops
- Follow the reference design layout guidelines in the biosensor device data sheet and/or evaluation kit documentation
- If layer stack-up differences exist between the SMPS circuit reference design and the subcircuits (e.g., MAX86141), integrate the SMPS circuit design with the larger layer stack-up definition