Smart factories (often referred to as Industry 4.0) are made possible through the convergence of industrial IoT, adaptive manufacturing, cloud computing, and artificial intelligence. Together, these four elements increase productivity by providing the flexibility to adapt manufacturing lines. This allows the production of multiple products without the need to stop production or schedule a technician to reconfigure equipment. Increasingly, this new level of intelligence is being moved to the very edge of the factory floor.

The **MAXREFDES212** Go-IO programmable logic controller (PLC) reference design (Figure 1) consists of multiple software configurable IOs in a compact form factor (less than 1 cubic inch) to address the needs of industrial automation, building automation, and industrial robotics. Go-IO provides design engineers with the means to rapidly create and prototype new industrial control systems before they are sourced and constructed.

ISOLATED DIGITAL INPUT

The **MAX22192** octal isolated digital input (Figure 2) translates eight, 24V, current-sinking industrial inputs to an isolated, SPI-compatible output.

Key Benefits:

- **Power Savings**: Current limiters on each digital input greatly reduce power dissipation while increasing accuracy compared to traditional resistive inputs.

The **MAX22192** octal isolated digital input (Figure 2) translates eight, 24V, current-sinking industrial inputs to an isolated, SPI-compatible output.
ISOLATION

The **MAX14483** (Figure 3) is a 6-channel, 3.75kV\(_{\text{RMS}}\) digital galvanic isolator using Maxim’s proprietary process technology. The six signal channels are individually optimized for SPI applications.

Key Benefits:

- **High-Speed SPI:** Low propagation delay on SCLK, SDI, and SDO with up to 100MHz clock, 200Mbps data rate
- **Robust Operation:** Galvanic isolation of digital signals
 - Withstands 3.75kV\(_{\text{RMS}}\) for 60s (VISO)
 - Continuously withstands 450V\(_{\text{RMS}}\) (VIOWM)
 - Withstands ±10kV surge between GNDA and GNDB with 1.2/50μs waveform

DIGITAL OUTPUT

Additional space and power savings are achieved in the digital output drivers using the **MAX14912/MAX14913** octal high-speed, high-side switch and push-pull driver.

Key Benefits:

- **Reduced Heat Dissipation:** Best-in-class \(R_{\text{ON}}\) of 230mΩ (max)
- **“Safe DeMag”:** Safe discharge of any inductive loads using Maxim’s proprietary technology
- **Fast Switching:** 200kHz switching ideal for high-speed control systems
ULTRA-PORTABLE IO ON THE GO:
MEET THE GO-IO

IO-LINK
Two-way communication with up to four IO-Link® smart sensors is made possible via the two dual-channel MAX14819 IO-Link master transceivers (Figure 4).

Key Benefits:
- **Low-Power Architecture:** Low driver on-resistance (1Ω)
- **Integrated IO-Link Framer:** Eliminates the need for external UARTs and relieves microcontroller from timing-critical task
- **Flexible Configuration:**
 - Two auxiliary Type 1/Type 3 digital inputs
 - Supports NPN sensors
 - Dual 24V sensor supply controller
- **Robust Performance:** Integrated protection with overvoltage and reverse-polarity protection on all interface pins

MOTOR DRIVER
The MAX14870 DC motor driver (Figure 5) provides a small, low-power, simple solution for driving and controlling brushed DC motors and relays with voltages between 4.5V and 36V.

RS-485 ROBUST COMMUNICATIONS
Robust communication is provided by the MAXM22511 (Figure 6) RS-485 transceiver. Data and power isolation are provided in a single integrated package which needs no external components, saving space and design costs.
POWER CONVERSION

The DC-DC voltage conversion stage of the Go-IO reference design further demonstrates potential power and space savings.

The MAX17681 high-voltage, high-efficiency, isobuck DC–DC converter provides isolated power up to 3W. The device operates over a wide 4.5V to 42V input and uses primary-side feedback to regulate the output voltage. The MAX17681 uses peak-current-mode control. The low-resistance, on-chip MOSFETs ensure high efficiency at full load while simplifying the PCB layout.

The MAXM15462 (Figure 7) is a high-efficiency, synchronous step-down DC-DC module with integrated controller, MOSFETs, compensation components, and inductor that operates over a wide input-voltage range. The module operates from a 4.5V to 42V input and delivers up to 300mA output current over a programmable output voltage from 0.9V to 5V.

Additional Benefits:

• **Robust Operation:**
 - Hiccup overcurrent protection
 - Overtemperature protection
 - -40°C to +125°C ambient operating temperature
 - -40°C to +150°C junction temperature

• **Rugged and Reliable:**
 - Complies with CISPR22 (EN55022) Class B conducted and radiated emissions
 - Passes drop, shock, and vibration standards:
 - JESD22-B103, B104, B111

• **Space-Saving:**
 - Available in a low-profile, compact 10-pin, 2.6mm × 3mm × 1.5mm, uSLIC™ package

CONCLUSION

The Go-IO PLC reference design provides designers and industrial engineers with the flexibility to experiment and find the best solution for low power dissipation, robust performance, and improved diagnostics, all in the smallest possible form factor.

LEARN MORE

- MAXREFDES212 Go-IO Industrial IoT Reference Design
- MAX14870 Motor Driver
- MAX14912 Digital Output Driver
- MAX22192 Octal Isolated Digital Input
- MAX14483 Digital Isolator
- MAXM22511 RS485 Transceiver
- MAXM15462 Step Down DC-DC Power Module
- MAX17681 Step Down DC-DC Converter
- MAX14819 IO Link Transceiver
- MAX32630 Microcontroller

Need Design Support? Call 800 MAXIM-IC (888 629-4642)