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 Optical Signal-to-Noise Ratio and the Q-Factor in  
Fiber-Optic Communication Systems 

 

1 Introduction 

The ratio of signal power to noise power at the 
receiver of a fiber-optic communication system has a 
direct impact on the system performance. Many 
electrical engineers are familiar with signal-to-noise 
ratio (SNR) concepts when referring to electrical 
signal and noise powers, but have less familiarity 
with the equivalent optical signal and noise powers.  
The purpose of this application note is to show the 
relationship between the electrical and optical 
signal-to-noise ratio (SNR), and then introduce the 
Q-factor. 

While the principles outlined in this application note 
may be applied to many types of systems, the scope 
of the discussion is limited to binary digital 
communications over optical fiber. Within this 
scope, there are only two possible symbols that can 
be transmitted, where these symbols represent a 
binary one or a binary zero. Thus, the symbol rate 
and the bit rate are equivalent. 

 

2 Signal Power 

The power in an arbitrary electrical waveform can be 
defined as the voltage multiplied by the current, 
which is written mathematically as: 

     )()()( titvtPE =     (1) 

Using ohm’s law, we can substitute v(t) = i(t)R, or 
alternately i(t) = v(t)/R, into equation (1) to get: 

     RtiRtvtPE )(/)()( 22 ==    (2) 

where R = voltage/current is the resistance in ohms. 
In binary digital communications, the signal is 
limited to two discrete levels.  Based on this, we can 
represent the electrical signal power at any given 
time by either: 
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where SE represents electrical signal power and the 
subscripts L and H represent the low or high power, 
voltage, or current levels associated with a binary 
zero or one respectively. 

Now we will repeat the above derivations for the 
case of optical signals using electromagnetic vector 
notation. Using this notation, the power in an optical 
signal can be defined as the magnitude of the vector 
cross product of the electric and magnetic fields, 
which can be written and simplified as follows: 
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where the notation | X | represents the magnitude of 

X, and ε
µη =  is the optical impedance of the 

fiber (µ = permeability and ε = permittivity). 
Recognizing that there are only two discrete power 
levels leads to the optical equivalent of equation (3), 
i.e., 

     
η

2
L

OL

E
S

�

=  and 
η

2
H

OH

E
S

�

=   (5) 

where SO represents optical signal power and the 
subscripts L and H represent the low and high power 
or low and high electric field strengths associated 
with a binary zero or one respectively. 

3 Noise Power  

Noise can be defined as any unwanted or interfering 
“signal” other than the one that is intended or 
expected. The various types of noise and their 
sources are beyond the scope of this application 
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note. For purposes of illustration we will model the 
noise power as random, normally distributed, zero 
mean, and additive (the most common type of 
noise).  

The random nature of the noise means that the 
instantaneous value of the noise amplitude is 
unpredictable. Thus, instead of classifying the noise 
in terms of its actual value at any given time, we use 
statistical averages and probabilities. We will  
classify the noise amplitude in terms of its root-
mean-square (rms) average, which is commonly 
given the symbol σ. The noise power is similarly 
expressed in terms of its mean-square average 
(equivalent to the statistical variance), which is 
given the symbol σ2. In general, the noises 
associated with the high and low signal levels in 
binary optical digital communications each have a 
different value.  

The mean-square average electrical and optical noise 
powers can be computed mathematically using the 
following equations: 
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where N is the noise power, T is the integration 
period, σ2 is the mean-square average power, and the 
subscript N signifies that the associated current, 
voltage or electric field is classified as noise.   

4 Signal Plus Noise 

Addition of the signal and noise amplitudes versus 
addition of the signal and noise powers can 
sometimes cause mathematical confusion. For 
example, if the combined signal and noise amplitude 
is written as )()( iHiti σ+= , then the power would 

seemingly be RiRti iH
22 )()( σ+= , which, when 

multiplied out, is equal to Rii iiHH )2( 22 σσ ++ . 
But, addition of the results of equations (3) and (6) 

gives SE + NE = Ri iH )( 22 σ+ . So, why is there a 
difference in the two results? 

The answer lies in the fact that when we add the 
signal (a constant) and the noise (an average value), 
we compute the result as an average. (We don’t need 
to know the value of the signal plus noise at every 
instant of time–we only care about the average 
value.) In the average, the cross term iHi σ2  is equal 
to zero. The reason for this is that the probability 
density function (pdf) of the noise was defined as 
zero mean and normally distributed. Since this pdf is 
symmetric about the mean, multiplication by a 
constant will not change the mean, which will 
remain zero, i.e., in the average, the result will 
always be zero. 

5 Signal-to-Noise Ratio (SNR) 

Knowledge of the ratio of the signal power to the 
noise power (signal-to-noise ratio or SNR) is 
important because it is directly related to the bit 
error ratio (BER) in digital communication systems, 
and the BER is a major indicator of the quality of the 
overall system. 

Drawing from the results of the preceding sections, 
we can mathematically express the electrical SNR as 
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Similarly, the optical SNR is 
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In practice, optical powers are rarely measured 
directly. Instead, the optical power is converted to a 
proportional electric current using a device such as a 
PIN photodiode, and then the current is measured.  
The ratio between the output current and the incident 
optical power is called the responsivity 
(mathematically represented using the symbol R ), 
which has the units of Amperes per Watt (A/W). It is 
important to note that the conversion between 
optical power (units of Watts) and electrical current 
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(units of Amperes) essentially results in a square 
root operation. In other words, as we recall from 
equation (2), electrical power is related to the square 
of the voltage or current, and, as we recall from 
equation (5) optical power is related to the square of 
the magnitude of the electric field. The result is that 
the conversion between optical signal or noise 

power, (So or No – both related to |E
�

|2 ) and 
electrical current results in what is essentially a 
square root relationship, i.e., 

     osignal Si = R   and onoise Ni = R            (10) 

Also, the optical SNR, when converted to an 
electrical SNR, is equal to the square root of the 
equivalent electrical SNR. This is illustrated 
mathematically by combining equations (8) and (10) 
as follows: 
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6 The Q-Factor 

As discussed previously, there are only two possible 
signal levels in binary digital communication 
systems and each of these signal levels may have a 
different average noise associated with it. This 
means that there are essentially two discrete signal-
to-noise ratios, which are associated with the two 
possible signal levels. In order to calculate the 
overall probability of bit error, we must account for 
both of the signal-to-noise ratios. In this section we 
will show that the two SNRs can be combined into a 
single quantity – providing a convenient measure of 
overall system quality – called the Q-factor.  

In the following discussion, we will assume the 
signals are electrical voltages, but, as demonstrated 
in the previous sections, the concepts can easily be 
extended to electrical current signals or optical 
signals. 

To begin this discussion, we consider the decision 
circuit in a fiber-optic receiver, which simply 
compares the sampled voltage, v(t), to a reference 
value, γ, called the decision threshold. If v(t) is 
greater than γ, it indicates that a binary one was sent, 
whereas if v(t) is less than γ, it indicates that  a 
binary zero was sent. Assuming perfect 

synchronization between the bit stream and the bit 
clock, the major obstacle to making the correct 
decision is noise added to the received data. 

 

 

 

 

 

 

If we assume that additive white Gaussian noise 
(AWGN) is the dominant cause of erroneous 
decisions, then we can calculate the statistical 
probability of making such a decision. The 
probability density function for v(t) with AWGN can 
be written mathematically using the Gaussian 
probability density function (pdf) as follows: 
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where vS is the voltage sent by the transmitter (the 
mean value of the density function), v(t) is the 
sampled voltage value in the receiver at time t, and σ 
is the standard deviation of the noise. Equation (12) 
is illustrated in Figure 2.  

 

 

 

 

 

 
 

If we assume that vS can take on one of two voltage 
levels, which we will call vL and vH, then the 
probability of making an erroneous decision in the 
receiver is: 
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Figure 2.  AWGN probability density function 
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 Figure 1. Block-diagram of a fiber-optic receiver 
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     P[ε] = P[v(t) > γ | vS = vL] P[vS = vL] +  

                       P[v(t) < γ | vS = vH] P[vS = vH]      (13) 

where P[ε] is the probability of error and P[x | y] 
represents the conditional probability of x given y. If 
we  further assume an equal probability of sending 
vL versus vH (50% mark density), then P[vS = vL] = 
P[vS = vH] = 0.5. Using this assumption, equation 
(13) can be reduced to: 
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where PROB[v(t),σx] is defined in equation (12).  
This result is illustrated in Figure 3. 

From Figure 3 and equations (13) and (14) we can 
conclude that the probability of error is equal to the 
area under the tails of the density functions that 
extend beyond the threshold, γ. This area, and thus 
the bit error ratio (BER), is determined by two 
factors: (1) the standard deviations of the noise (σL 
and σH) and (2) the voltage difference between vL 
and vH.  

It is important to note that for the special case when 
σL = σH, the threshold is halfway between the low 
and high levels (i.e., γ = (vH−vL)/2). But, for the 
more general case when σL ≠ σH, the optimum 
threshold for minimum BER will be higher or lower 
than (vH−vL)/2.  

In order to solve equation (14) we need a practical 
way to compute the result of the integrated Gaussian 
pdf ( PROB[v(t),σx] ) that is defined in equation 
(12). Since there is no known closed form solution 
to this integral, it must be evaluated numerically. To 
maintain compatibility with existing numerical 
solutions, equation (12) can be re-written in its 
equivalent standardized (zero mean and standard 
deviation of one) form. In order to convert to the 
standardized form, we use the well known z = (x – 
µ)/σ substitution, where x = v(t) and µ = vS in 
equation (12). For example, we start with 
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              (from equations (12) and (14) ) 

and then, substituting 
σ

µ−= x
z  (so that 

µσ −= zx and dzdx σ= ) results in:  

Figure 3. Probability of error for binary signaling 
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which is defined as the error function 
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(Note that there are a number of variations of this 
function published in the literature.) The error 
function gives the area under the tail of the Gaussian 
pdf (mean = vS and standard deviation = σx) between 
v(t) and infinity. This form of the error function is 
useful because numerical solutions are available in 
both tabulated form1 and as built-in functions within 
many software utilities (e.g., Er(x) = 1- 
NORMSDIST(x) in Microsoft Excel). In terms of 
Er(z), equation (14) can be rewritten as2: 
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It is interesting to note that the arguments of the 
error functions in equation (16) represent the square 
root of the signal power divided by the square root 
of the noise power, which, we recall from equation 
(11), is equivalent to the optical signal-to-noise ratio. 
Thus, equation (16) can be rewritten as follows: 

      [ ] [ ]OLOH SNRErSNRErP
2

1

2

1
][ +=ε           (17) 

where SNROH  and SNROL are the optical SNRs for 
the high and low levels. 

The optimum threshold level, γopt, is defined as the 
threshold level that results in the lowest probability 
of bit error. Further, setting the optimum threshold 
level also results in the same probability of bit error 
when a high signal is transmitted as when a low 
signal is transmitted. This means that for the special 
condition of γopt, SNROH  = SNROL, which leads to the 
following definition of the Q-factor3: 
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By substituting the definition of Q from equation 
(18) into equation (16) we find that, when γ = γopt   
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Next, we solve equation (18) for γopt to get 
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and then substitute this expression for γopt back into 
equation (18) to get  
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It should be noted that multiplying the individual 
terms in equation (21) by resistance, impedance, or 
responsivity will convert the expression for Q to 
equivalent terms of current or optical power, i.e., 
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Finally, we can substitute equation (21) into the 
result from equation (19) to get 
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7 Conclusions 

The Q-factor defined in equations (18) and (21) 
represents the optical signal-to-noise ratio for a 
binary optical communication system. It combines 
the separate SNRs associated with the high and low 
levels into overall system SNR. The form of the Q-
factor given in equation (21) simplifies both the 
measurement of SNR and the calculation of the 
theoretical BER due to additive random noise. 

For example, measurement of the Q-factor can be 
performed with the vertical histogram function on 
many communications oscilloscopes. This can be 
done by displaying a portion of the data pattern and 
alternately applying the vertical histogram to the 
high (one) level and the low (zero) level. The 
oscilloscope histogram function will estimate the 
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mean (vH or vL) and the standard deviation (σH or 
σL), which can then be used directly to compute the 
Q-factor. 

The Q-factor is also useful as an intuitive figure of 
merit that is directly tied to the BER. For example, 
the BER can be improved by either (1) increasing 
the difference between the high and low levels in the 
numerator of the Q-factor, or (2) decreasing the 
noise terms in the denominator of the Q-factor. 

Finally, the Q-factor allows simplified analysis of 
system performance. The most direct measure of 
system performance is the BER, but calculation of 
the BER requires evaluation of the cumulative 
normal distribution integral. Since this integral has 
no closed form solution, evaluation requires  

numerical integration or the use of tabulated values. 
A much simpler method of analyzing system 
performance is to optimize the Q-factor, knowing 
that this will result in optimized BER. 
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