APPLICATION NOTE 942

Load Switcher Draws Only 6µA

Jul 04, 1996

Abstract: Taking advantage of the IC’s very low quiescent current, this circuit enables a small signal of ±1mV or more to switch relatively large load currents.

Figure 1’s circuit draws only 6µA, but it enables a small signal of ±1mV or more to switch relatively large load currents. It takes advantage of the IC’s very low quiescent current—1.2µA (max) per amplifier (less than a typical battery’s self-discharge)—which is able to flow through R1 without turning on Q1. When operated with a sensing coil (as shown) and stimulated by a magnet, the circuit performs the function of a reed switch, but with greater sensitivity. Other applications include alarm systems, bipolar threshold sensing, and audio volume switching.

Figure 1. This load switcher enables a small signal to turn on a much larger load current.
Inducing a signal of either polarity in the coil (by passing a magnet near it, for example) causes the dual op amp to draw more current from its VCC terminal. The increase produces a voltage across R1 that exceeds Q1’s VBE threshold, activating the complementary monostable multivibrator consisting of Q1, Q2, and associated components. As a result, Q1 connects battery voltage to the load. For many applications, you can replace the monostable with a simple pnp output stage.

A similar idea appeared in the July 4, 1996 issue of EDN.

Related Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX417</td>
<td>Single, Dual, Quad, 1.2µA Max, Single-Supply Op Amps</td>
<td>Free Samples</td>
</tr>
</tbody>
</table>

More Information

For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

APPLICATION NOTE 942, AN942, AN 942, APP942, Appnote942, Appnote 942
Copyright © by Maxim Integrated Products