Abstract: If an application requires writing to EPROM devices after deployment, 5V devices need to be protected from overvoltage exposure. This article explains how to have 1-Wire EPROMs and 5V 1-Wire devices on the same bus, if the 5V devices are protected from the programming pulse.

Introduction

Most 1-Wire devices work with 2.8V to 5.25V V_{PUP} for read and write. EPROM devices (including the DS2406, DS2502, DS1982, DS2505, and DS1985) require a 12V programming pulse for writing. The programming pulse, however, constitutes overvoltage for devices that cannot sustain more than 5.5V. Therefore, if the application requires writing to EPROM devices after deployment, 5V devices need to be protected (Figure 1). The circuit featured in this document protects from positive overvoltages up to 40V including 12V EPROM programming pulses.

Protection Circuit Requirements

A suitable protection circuit needs to meet several requirements:

- Impose a very low load on the 1-Wire bus
- Not impede programming of 1-Wire EPROMs
- Properly protect 5V 1-Wire devices
- Maintain the full communication signal amplitude
In addition, it is desirable that a protection circuit be built from easily available, inexpensive components.

The Basic Concept

Figure 2 shows a very simple protection circuit. The zener diode U1 limits the voltage at the gate of Q1. R1 limits the current that can flow through U1. Q1 is an n-channel MOSFET that operates as a source follower, letting the voltage from its gate minus an offset reach the IO pin of the 1-Wire slave. To maintain the full communication signal amplitude, the offset should be as low as possible. Well suited for this purpose are depletion mode MOSFETs, which have a negative offset. The Supertex® DN3135 was tested and its offset was measured as -1.84V (data sheet parameter $V_{GS(\text{OFF})}$). Consequently, the necessary gate voltage V_G is 3.16V, which defines the threshold voltage of U1.

Figure 2. The concept of a protection circuit.

Unfortunately, the transistor's offset voltage varies based on device and temperature. Instead of -1.84V, the value could be anywhere between -3.5 and -1.5V at room temperature. This variation makes finding the appropriate zener diode difficult. In addition, low-voltage zener diodes are typically specified at 5mA, a current that would impede the programming of 1-Wire EPROMs. If operated at 100µA, for example, the voltage drop is far below the specified threshold. Better suited are shunt regulators, which are similar to zener diodes, but reach their threshold voltage at a much lower current. The 3.3V version of the Maxim LM4040, for example, needs just 67µA to reliably reach the reverse breakdown voltage. Defining that 67µA are reached at 5V on the 1-Wire bus, one can calculate $R_1 = (5V - 3.3V)/67\mu A = 25.4k\Omega$. The additional load of 67µA on the 1-Wire bus corresponds to approximately 10 slave devices. This is acceptable for a 1-Wire master like the DS2480B. Now we will check the current through R_1 during a 12V programming pulse:

$$I(R_1) = (12V - 3.3V)/25.4k\Omega = 343\mu A$$

(Eq. 1)

The programming current for 1-Wire EPROMs is specified as 10mA. The additional load of roughly 1/3mA should not cause any problems. Therefore, the circuit in Figure 2 should work if the MOSFET's offset voltage is close to -1.8V. This, however, is not guaranteed. Therefore, a circuit that provides an adjustable threshold or can be trimmed is needed.

Adjustable Threshold with Monolithic Current Source

The circuit in Figure 3 uses a current source (U1) to set the maximum gate voltage for Q1. An ideal current source delivers a current that is independent of the voltage across its terminals. With a given current I_{OUT}, the gate voltage can be adjusted by choosing different values for R_1.

![Diagram of protection circuit](image-url)
A generally available monolithic current source is the NXP® PSSI2021SAY (Figure 4). The device has four terminals, called VS, IOUT, GND, and REXT. REXT, if installed, bypasses an internal resistor of nominal 48kΩ.

According to the product data sheet, \(I_{\text{OUT}} \) is calculated as:

\[
I_{\text{OUT}} = \frac{0.617}{R_{\text{EXT}}(\Omega)} + 15\mu\text{A} \quad \text{(Eq. 2)}
\]

With \(R_{\text{EXT}} = 10k\Omega \), to mitigate the tolerance of the 48kΩ internal resistor in parallel to \(R_{\text{EXT}} \), the typical current is \((61.7 + 15)\mu\text{A} = 76.7\mu\text{A}\), according to the PSSI2021SAY data sheet. The output current depends to some extent on the supply voltage \(\text{VS} \), in particular for supply voltages below 5V. When measured in a test setup, the value of 76.7\(\mu \)A was reached at 3.75V. At 12V, the current was 94\(\mu \)A. This behavior should be considered normal due to the chip’s simple design.

The circuit of Figure 4 was tested with \(R_{\text{EXT}} = 10k\Omega \) and \(R_1 = 39k\Omega \). The 1-Wire adapter was a Maxim DS9097U-E25. Figures 5 and 6 show the signals at the 1-Wire adapter (top trace) and protected slave (bottom trace). The programming pulse (see Figure 6), causes a ±3V spike of ~10\(\mu \)s duration at the protected slave. During the programming pulse, the voltage at the protected slave rises to 6V, which can be problematic.
A downside of the PSSI2021SAY is its fairly high supply current. At 12V, including 15µA for I_{OUT}, the current could be as high as 370µA. Besides the adjustability, the circuit with PSSI2021SAY is not better than the circuit in Figure 2.

Adjustable Threshold with Bandgap Reference and Discrete Current Source

The PSSI2021SAY data sheet discloses the basic concept of the circuit. One of the weaknesses is the internal reference voltage, which is derived from the forward voltage of two diodes in series. Better performance is achieved if a bandgap reference is used instead of forward biased diodes. **Figure 7** shows a circuit that is equivalent to the PSSI2021SAY and consumes less current, and the current is
practically voltage independent once the bandgap reference has reached its normal operating current.

![Protection circuit with bandgap reference](image)

Figure 7. Protection circuit with bandgap reference.

The PSSI2021SAY is replaced by transistor Q2, bandgap reference U1, and resistors R2 and R3. With R3 chosen as 100kΩ, the bandgap reference reaches its minimum operating current at 2.2V on IO. The current through U1 is 38µA at 5V and 108µA at 12V on IO.

According to Kirchhoff's law, the following relationship applies:

\[V_{BG} = I_E \times R_2 + V_{EB} \quad (Eq. 3) \]

For a general-purpose silicon pnp transistor such as the 2N3906, \(V_{EB} \) is typically 0.6V at room temperature and low collector current. With \(V_{BG} \) known as 1.235V, this equation can be resolved to:

\[R_2 = \frac{(V_{BG} - V_{EB})}{I_E} = \frac{(1.235V - 0.6V)}{I_E} = 0.635V/I_E \quad (Eq. 4) \]

To achieve the same nominal current as with the PSSI2021SAY circuit (76.7µA), R2 is calculated as 8.2kΩ. With Q1 being the same as in Figure 2, \(V_G \) must be 3.2V. Neglecting the Q2's base current, \(I_C \) is equal to \(I_E \). R1 now can be calculated as:

\[R_1 = \frac{V_G}{I_C} = \frac{3.2V}{76.7\mu A} = 41.7k\Omega \quad (Eq. 5) \]

To lower the overall load on the 1-Wire master, one could lower the output current of the current source. Increasing both R1 and R2 by a factor of 4 (R2 = 33kΩ, R1 = 160kΩ) reduces the current to 19µA, resulting in a maximum gate voltage of 3.08V. In practice, R1 needs to be adjusted to compensate for the MOSFET's \(V_{GS(OFF)} \) tolerance. The proper value is found if the voltage at the 1-Wire slave closely matches \(V(10) \).

The circuit in Figure 7 was tested with a National Semiconductor® LM385 instead of the newer and improved Linear Technology® LT1004, which was not readily available. The 1-Wire adapter was a Maxim DS9097U-E25. Figures 8 and 9 show the signals at the 1-Wire adapter (top trace) and protected slave (bottom trace). The programming pulse (see Figure 9), causes a ~10µs spike (2V rising, 1.5V falling) at the slave. This circuit has a better performance than the circuit in Figure 4. During the programming pulse, the voltage at the protected slave just barely rises above the 5V level.
To lower the amplitude of the spike caused by the programming pulse, C1 with a value of 100pF was installed. Figures 10 and 11 show the result. The communication waveform is slightly distorted. The amplitude of the spike is reduced (1.4V rising, 1.2V falling). In contrast to Figure 9, the voltage does not fall below 3V. A 5.1V low-power zener diode, like the BZX84, from the source of Q1 to GND can clip the rising spike, but does not affect the falling spike.
Protection Limits

The maximum voltage that the circuit in Figure 7 can sustain between IO and GND is determined by:

- The maximum current that is safe for U1
- The V_{CE} breakdown voltage of Q2
- The V_{GD} and V_{DS} breakdown voltages of Q1

These values are 20mA for LT1004 (U1), 40V for 2N3906 (Q2), and 350V for Q1. The limiting component is Q2. At 40V, the current through U1 is 143µA, far below the 20mA limit.
Summary

It is possible to have 1-Wire EPROMs and 5V 1-Wire devices on the same bus if the 5V devices are protected from the programming pulse. The simple protection circuit in Figure 2 works, but is not optimal due to the wide variation of the MOSFET’s gate-to-source off voltage; one needs to find a "matching pair" of a transistor and shunt regulator. The circuit in Figure 4 is adjustable to compensate for the MOSFET's tolerance, but imposes a larger load on the 1-Wire master. Since the PSSI2021SAY can sustain up to 75V, this circuit can protect from voltages up to 75V. The circuit in Figure 7 is functionally equivalent to the one in Figure 4, but has a better performance and imposes a much lower load on the 1-Wire master. Its protection level is 40V, limited by Q2. The protection level can be increased by choosing a transistor with a higher V_{CE} breakdown voltage.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.
Linear Technology is a registered trademark of Linear Technology Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.
NXP is a registered trademark of NXP B.V.
Supertex is a registered trademark of Supertex, Inc.

<table>
<thead>
<tr>
<th>Related Parts</th>
<th>Free Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1982 1Kb Add-Only jButton®</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS1985 16Kb Add-Only jButton®</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS2406 Dual Addressable Switch Plus 1Kb Memory</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS2502 1Kb Add-Only Memory</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS2505 16Kb Add-Only Memory</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS9097U-E25 Universal 1-Wire COM Port Adapter</td>
<td>Free Samples</td>
</tr>
<tr>
<td>LM4040 Improved Precision Micropower Shunt Voltage Reference with Multiple Reverse Breakdown Voltages</td>
<td>Free Samples</td>
</tr>
</tbody>
</table>

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5026: http://www.maximintegrated.com/an5026
TUTORIAL 5026, AN5026, AN 5026, APP5026, Appnote5026, Appnote 5026
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal