Abstract: You can obtain a precise, positive output voltage from a negative voltage supply by teaming a boost converter with a linear regulator. The input and output capabilities of the circuit depend on the allowable input/output voltages of ICs U1 and U2.

A similar version of this article appeared in the April 23, 2009 issue of EDN magazine.

You can obtain a precise, positive output voltage from a negative voltage supply by teaming a boost converter with a linear regulator as shown in Figure 1. The input and output capabilities of the circuit depend on the allowable input/output voltages of ICs U1 (MAX8574) and U2 (MAX8875). In this case, U1 and U2 are chosen to convert a -5V input voltage to a +3.3V output voltage.

U1 is a boost converter that accepts -5V when its VCC pin is connected to the common ground (the ground of the negative power supply input). Voltage divider R1/R2 at the output of this U1 circuit provides the feedback necessary to set the output voltage 10.5V above U1’s GND pin. With the FB threshold voltage factory-set to 1.226V, you can choose R1 and R2 using this equation: \((1.226V/R2)(R1 + R2) = 10.5V\). Current through the R1 and R2 resistors should be at least 2µA. The U1 output (U2’s IN) is 10.5V above -5V, which is +5.5V with respect to the common ground.

U2, a linear regulator whose GND pin connects to the common ground, accepts input voltages up to +6.5V. Its output is factory set to +3.3V. Figure 2 shows the Figure 1 output voltage versus output current for input voltages of -4.5V, -5V, and -5.5V.
Figure 2. Figure 1 output voltage vs. output current, for source voltages -4.5V, -5.0V, and -5.5V.

Related Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Free Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX8574</td>
<td>High-Efficiency LCD Boost with True Shutdown</td>
<td></td>
</tr>
<tr>
<td>MAX8875</td>
<td>150mA, Low-Dropout Linear Regulator with Power OK Output</td>
<td></td>
</tr>
</tbody>
</table>

More Information

For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

APPLICATION NOTE 4499, AN4499, AN 4499, APP4499, Appnote4499, Appnote 4499
Copyright © by Maxim Integrated Products