Add Margining Capability to a DC/DC Converter

By: Brian Vasquez
Nov 03, 2010

Abstract: You can easily add margining capability (digital adjustment of the output voltage) to a DC/DC converter by adding a 2- or 4-channel, I²C-adjustable current DAC (DS4402 or DS4404) at the converter's feedback input. Because each DAC output is 0mA at power up, the extra circuitry is essentially transparent to the system until a command is written via the I²C bus.

A similar version of this article appeared in the September 18, 2008 issue of EDN magazine.

You can easily add margining capability to a DC/DC converter (digital adjustment of the output voltage) by making a single connection to the existing circuit as shown by the dotted line in Figure 1. The extra IC is a 2- or 4-channel, I²C-adjustable current DAC (DS4402 or DS4404). Because each DAC output is 0mA at power up, the extra circuitry is essentially transparent to the system until a command is written via the I²C bus.

As an example, assume \(V_{IN} = 3V \) to 5.5V, \(V_{OUT} = 1.8V \) (the desired nominal output voltage), and \(V_{FB} = 0.6V \) (not to be confused with \(V_{REF} \) of the DS4404). You can obtain the \(V_{FB} \) value from the DC/DC converter datasheet, being sure to verify that it is within the OUTx voltage range specified in the current DAC datasheet (specified as \(V_{OUT:SINK} \) and \(V_{OUT:SOURCE} \) depending on whether you are sinking or sourcing current). It's also important to verify the input impedance of the DC/DC converter's FB pin (the circuit shown assumes a high impedance).

Assume we want to add a ±20% margining capability to the DC/DC converter output (\(V_{OUT} \)):

\[
V_{OUT\text{MAX}} = 2.16V
\]
\[V_{\text{OUTNOM}} = 1.8V \]
\[V_{\text{OUTMIN}} = 1.44V \]

First, determine the necessary relationship between \(R_{\text{TOP}} \) and \(R_{\text{BOTTOM}} \) that yields the nominal output (\(V_{\text{OUTNOM}} \)) when \(I_{\text{DS4404}} = 0A \):

\[V_{\text{FB}} = V_{\text{OUTNOM}} \left(\frac{R_{\text{BOTTOM}}}{R_{\text{BOTTOM}} + R_{\text{TOP}}} \right) \]

Solving for \(R_{\text{TOP}} \),

\[R_{\text{TOP}} = R_{\text{BOTTOM}} \left(\frac{V_{\text{OUTNOM}}}{V_{\text{FB}}} - 1 \right) \] \hspace{1cm} (Eq. 1)

For our example,

\[R_{\text{TOP}} = R_{\text{BOTTOM}} \left(\frac{1.8V}{0.6V} - 1 \right) = 2 \times R_{\text{BOTTOM}} \]

The current (\(I_{\text{DS4404}} \)) required to make \(V_{\text{OUT}} \) increase to \(V_{\text{OUTMAX}} \) is derived by summing currents at the FB node:

\[I_{\text{RTOP}} = I_{\text{RBOTTOM}} + I_{\text{DS4404}} \]
\[I_{\text{DS4404}} = I_{\text{RTOP}} - I_{\text{RBOTTOM}} \]

\[I_{\text{RTOP}} = \left(\frac{V_{\text{OUTMAX}} - V_{\text{FB}}}{R_{\text{TOP}}} \right) \]
\[I_{\text{RBOTTOM}} = \left(\frac{V_{\text{FB}}}{R_{\text{BOTTOM}}} \right) \] \hspace{1cm} (Eq. 2)

\[I_{\text{DS4404}} = \left(\frac{V_{\text{OUTMAX}} - V_{\text{FB}}}{R_{\text{TOP}}} \right) - \left(\frac{V_{\text{FB}}}{R_{\text{BOTTOM}}} \right) \]

This equation can be simplified by solving Equation 1 for \(R_{\text{BOTTOM}} \) and substituting, which yields:

\[I_{\text{DS4404}} = \frac{V_{\text{OUTMAX}} - V_{\text{OUTNOM}}}{R_{\text{TOP}}} \]

In terms of margin percentage:

\[I_{\text{DS4404}} = \frac{V_{\text{OUTMAX}} \times \text{MARGIN}}{R_{\text{TOP}}} \] \hspace{1cm} (Eq. 3)

where margin = 0.2, to implement ±20% margining in this case. Before you can use this relationship to calculate \(R_{\text{TOP}} \) and \(R_{\text{BOTTOM}} \), you must select the full-scale current \(I_{\text{FS}} \).

According to the DS4404 datasheet, the full-scale current (specified as \(I_{\text{OUT:SINK}} \) or \(I_{\text{OUT:SOURCE}} \)) must be between 0.5mA and 2.0mA, to guarantee the specifications for accuracy and linearity. Unfortunately, no formula is available for calculating the ideal full-scale current. That value is influenced by the desired number of steps, the step size, and the values for \(R_{\text{TOP}} \) and \(R_{\text{BOTTOM}} \). Another factor affecting the full-scale current value would be the requirement that a particular register setting correspond to a particular margin percentage.

In any case, your selection of a full-scale current will likely require several iterations, in which you select an arbitrary value (within the range), and then calculate \(R_{\text{TOP}} \), \(R_{\text{BOTTOM}} \), \(R_{\text{FS}} \), and step size. When you've determined an acceptable full-scale current value, you may want to further adjust it (or some of the
resistor values) to ensure that the resistor values finally specified are commonly available.

To calculate R_{TOP} for the original example, we choose $IFS = IDS4404$, which gives us 31 equal increments (steps) from V_{OUTNOM} to V_{OUTMAX}, as well as 31 steps from V_{OUTNOM} to V_{OUTMIN}. This resolution is more than adequate for our example. We could, for instance, begin by arbitrarily choosing IFS in the center (1.25mA) of the specified range, and then performing all the calculations. Instead, for illustrative purposes we perform calculations for the endpoints of the range (0.5mA, 2.0mA).

So, for $IFS = IDS4404 = 0.5mA$: Using Equation 3 and solving for R_{TOP},

$$R_{TOP} = \frac{V_{OUTNOM} \times MARGIN}{IDS4404} = \frac{1.8 \times 0.2}{0.5 \times 10^{-3}} = 720\Omega$$

$$R_{BOTTOM} = \frac{R_{TOP}}{2} = \frac{720}{2} = 360\Omega$$

To calculate R_{FS}, use the formula in the DS4404 datasheet plus the V_{REF} value also found in that datasheet:

$$R_{FS} = \frac{V_{REF}}{IFS} \times \frac{31}{4} = \frac{1.23}{0.5 \times 10^{-3}} \times \frac{31}{4} = 19,065\Omega = 19k\Omega$$

$$\text{STEPSIZE} = \frac{IFS}{\text{NUMBER OF STEPS}} = \frac{0.5 \times 10^{-3}}{31} = 16.1\mu A/\text{STEP}$$

Finally, for completeness we determine the DS4404 output current as a function of register setting: $I_{OUT}(\text{register setting}) = \text{step size} \times \text{register setting}$.

Note that the register setting above does not include the sign bit, which is used to select sink or source. The DS4404 sinks current when the sign bit = 0, making V_{OUT} increase to V_{OUTMAX}. It sources current when the sign bit = 1, making V_{OUT} decrease towards V_{OUTMIN}.

For $IFS = IDS4404 = 2.0mA$:

$$R_{TOP} = \frac{V_{OUTNOM} \times MARGIN}{IDS4404} = \frac{1.8 \times 0.2}{2.0 \times 10^{-3}} = 180\Omega$$

$$R_{BOTTOM} = \frac{R_{TOP}}{2} = \frac{180}{2} = 90\Omega$$

$$R_{FS} = \frac{V_{REF}}{IFS} \times \frac{31}{4} = \frac{1.23}{2.0 \times 10^{-3}} \times \frac{31}{4} = 4,766\Omega = 4.7k\Omega$$

$$\text{STEPSIZE} = \frac{IFS}{\text{NUMBER OF STEPS}} = \frac{2.0 \times 10^{-3}}{31} = 64.5\mu A/\text{STEP}$$

Comparing R_{TOP} and R_{BOTTOM} for the two cases ($IFS = 0.5mA$ vs. $2.0mA$), you can see that $IFS = 0.5mA$ is more attractive because the resistances are higher.

<table>
<thead>
<tr>
<th>Related Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS4404</td>
</tr>
</tbody>
</table>

More Information
For Technical Support: http://www.maximintegrated.com/support