
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4458

Keywords: low-power,OIS,optical image stabilization,camera

APPLICATION NOTE 4458

Executing Application Code from RAM on the
MAXQ8913 Microcontroller
Sep 01, 2009

Abstract: The Harvard memory map architecture used by the MAXQ8913 and other MAXQ® microcontrollers
provides users with the flexibility to map different physical memory segments (such as the data SRAM) into
either program or data memory space, as needed. Under certain circumstances, executing portions of an
application from data SRAM can provide a performance boost and reduce power consumption. These benefits
come at the cost of additional application complexity.

Overview
The MAXQ8913, like many other MAXQ microcontrollers, includes an internal SRAM-based data memory
region which can be mapped either into data memory space or, optionally, into program memory space. The
internal SRAM is generally used as data memory, with the bulk of code execution occurring in the program
flash or masked ROM. However, under certain circumstances it can be useful for an application to execute a
limited portion of its code from the internal SRAM.

This application note explains how to configure and load assembly-based code so that it will execute properly
from the internal SRAM. The advantages and disadvantages of this execution are discussed. Demonstration
code for this application note is written for the MAXQ8913, using the assembly-based MAX-IDE environment.
The code and project files for the demo application covered in this application note are available for
download.

While the code discussed in this application note is targeted specifically for the MAXQ8913 microcontroller,
the principles and techniques shown here apply equally well to any other MAXQ-based microcontroller with
internal SRAM that can be mapped into program space. Other MAXQ microcontrollers that can execute code
in this manner include the MAXQ2000, the MAXQ2010, and the MAXQ3210/MAXQ3212.

This code will run properly on any MAXQ8913-based hardware that provides a serial-port interface (RS-232
or USB-to-serial) for the MAXQ8913's serial port 0. Output from the demonstration code can be viewed by
connecting a terminal emulator to the serial port at 9600 baud, 8 data bits, 1 stop bit, no parity.

The latest installation package and documentation for the MAX-IDE environment are available for free
download.

MAX-IDE installation
MAXQ Core Assembly Guide
Development Tools Guide

Page 1 of 9

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/MAXQ8913
http://www.maximintegrated.com/tools/other/appnotes/4458/AN4458-software-code.zip
http://www.maximintegrated.com/MAXQ2000
http://www.maximintegrated.com/MAXQ2010
http://www.maximintegrated.com/MAXQ3210
http://www.maximintegrated.com/MAXQ3212
http://files.dalsemi.com/microcontroller/maxq/dev_tool_software/MAX-IDE/MAX-IDE.zip
http://files.dalsemi.com/microcontroller/maxq/information/MaxQCoreAsm.pdf
http://files.dalsemi.com/microcontroller/maxq/information/MaxQDevTools.pdf

Advantages of Executing Code from RAM
Normally, most application code on MAXQ microcontrollers is set up to execute from the main program space,
which is usually implemented using a large internal flash memory or (for masked-ROM devices) a customer-
specific application ROM. The main program space is nonvolatile, so it makes sense to store the application
code there in most instances. The internal SRAM is used to store variables, a software stack, and similar data
that do not need to be saved when the device is powered off.

However, for certain applications there are advantages to executing some code from the data SRAM.

Reduced Power Consumption
In most MAXQ microcontrollers, supply current is reduced when executing code from internal SRAM (or from
the Utility ROM) as opposed to the program flash. This power savings occurs because the flash can be
powered down dynamically when it is not being accessed. If an application typically spends most of its active
time executing a very small amount of code, executing that code from SRAM can dramatically reduce overall
power consumption.

Direct Memory Access to Main Program Space
Normally, code executing from the main program flash cannot directly read data that is also stored in the
main program flash. This type of data can include constant strings and data tables included with the
application data. To read this data, the application must call special-purpose data transfer functions in the
Utility ROM. Executing code from the RAM bypasses this restriction and allows data contained in the flash to
be read directly using the standard data pointers. This speeds up access. If a small algorithm spends a large
amount of time traversing lookup tables or other constant data stored in the flash, executing the algorithm
from RAM allows the operation to be completed in a shorter amount of time.

Entire Flash Memory Can Be Rewritten
The Utility ROM on the MAXQ8913, like most flash-based MAXQ microcontrollers, contains standard functions
that allow the program flash to be erased and rewritten under application control. This process allows the
implementation of user loaders that reload part, or all, of the application using a user-specified interface (such
as the serial port, SPI, or I²C). However, if the user loader code is contained in flash, it cannot erase or
rewrite the part of the flash that it occupies. Executing user loader code from RAM allows the entire flash
program space to be erased and rewritten with new code, including the user loader itself.

Disadvantages of Executing Code from RAM
There are also disadvantages and restrictions that apply when executing application code from the RAM.
Some of the disadvantages have work-arounds, while others are inherent in the MAXQ architecture.

Limited Code Space
The RAM is typically much smaller than the program flash, which means that only a small amount of code can
be executed from the RAM at any given time. It is possible, however, to run one routine from the RAM, erase
it and load a second routine, run the second routine, and so on.

Code Must Be Mirrored
Before the code can be executed from the RAM, it must be copied to the RAM. This process requires time
and code space to implement. Additionally, the code must be copied from somewhere, so in effect the code is
stored twice: once in the flash or program ROM, and once in the RAM. Even though the code is not intended
to be executed from the flash, it must still be stored there, thus consuming additional space.

Page 2 of 9

RAM Cannot Be Directly Accessed
When executing code from the internal RAM, the RAM is no longer visible in the data memory space. This
means that data pointers cannot be used to read from, or write to, RAM locations directly. It is possible to
work around this restriction in the same manner as application code running from the flash. Use the Utility
ROM data transfer functions (UROM_moveDP0 and similar functions) to read from the RAM and, by writing
similar functions in the flash, perform an indirect write to the RAM. However, this work-around takes additional
time and application space.

Assembling Code to Execute from RAM
When writing application code that will be executed from the data RAM, one major factor must be understood.
Each word of code will be assembled at one address and loaded into the flash at that address, but it will be
executed in RAM at a different address. For example, if a piece of application code is loaded into the flash
starting at program word address 0100h and is copied to the RAM starting at data word address 0100h, it is
not possible to jump to address 0100h to execute the code in RAM. Address 0100h is still the address of the
code in flash. The address of the code in RAM in program space is its data memory address plus an offset of
A000h, as shown in Figure 1 below.

Figure 1. Memory mapping for the MAXQ8913 when executing code from RAM.

To execute the application code that was copied to the RAM at data memory address 0100h, you must jump

Page 3 of 9

to program address A100h.

Executing the code from RAM causes a difficulty for the MAX-IDE assembler. MAX-IDE is simply not aware
that you will be executing the code at a different address from where it is being assembled. For example,
suppose that you have a routine called subOne that begins at flash address 0080h and another routine
located at 0300h that calls the first routine. This code is shown below.

org 0080h

subOne:
 perform various calculations...
 ret

...

org 0300h

subTwo:
 call subOne
 ...and so on...

What happens if both these routines are copied into RAM and executed there? Assuming that the routines are
copied to the same data memory addresses in RAM as the program memory addresses which they occupy in
flash, then subOne will be located at program address A080h and subTwo will be located at A300h.

Because the distance between the line "call subOne" and the destination label subOne is more than the
relative jump distance (+127/-128 words), the instruction must be assembled as an absolute LCALL. However,
the only address that the assembler has for subOne is 0080h, so the instruction will be assembled as "LCALL
0080h." When subTwo executes, it will not call the copy of subOne located in the RAM, but instead will call
the version located in flash.

There are two possible work-arounds to this dilemma. The first and simplest method is to force the assembler
to always use relative jumps and calls, and to keep the routines close enough together in RAM that they can
call one another in this way. Instead of using the JUMP and CALL opcodes (which allow the assembler to
choose short or long jumps), always use SJUMP and SCALL. This will force the use of the relative jump
versions of the instructions.

There is, however, a caveat to this approach. If the amount of code that you are running from RAM is longer
than 128 words, it is possible that a relative jump will not be long enough for one routine in RAM to call
another routine. The solution in this case is to fix addresses for the various routines by using ORG
statements, and then define equates that contain their corrected addresses in RAM. These equates can be
used in LCALL and LJUMP statements as shown below.

subOne equ 0A080h

org 0080h

; subOne
 perform various calculations...
 ret

...

org 0300h

subTwo:
 lcall #subOne
 ...and so on...

Page 4 of 9

This process forces the assembler to use the correct address for the LCALL.

Copying Code to RAM
Before code can be executed from the RAM, it must first be copied into the RAM. The easiest way to copy a
large amount of code from the flash to the RAM is to use the Utility ROM copyBuffer function. This function
takes two data pointers (DP[0] and BP[Offs]) and a length value (LC[0]) as inputs. It copies the number of
specified bytes/words from the source DP[0] to the destination BP[Offs]; it can copy up to 256 bytes/words at
a time.

Our demonstration application will copy the first 512 words of itself from flash to RAM, and then jump to the
copy in RAM to begin executing code. The source pointer (DP[0]) points to the location of the program flash in
the Utility ROM's memory map, which begins at 8000h. Note that to avoid an endless loop we jump to the
portion of the copy in RAM that follows the RAM-copying code.

org 0020h

copyToRAM:
 move DPC, #1Ch ; Ensure all pointers are operating in word mode.
 move DP[0], #8000h ; Start of program flash from UROM's perspective.
 move BP, #0 ; Start of data memory.
 move Offs, #0
 move LC[0], #256 ; The Offs register limits us to a 256-word copy.
 lcall UROM_copyBuffer

 move DP[0], #8100h ; Copy second half.
 move BP, #0100h
 move Offs, #0
 move LC[0], #256
 lcall UROM_copyBuffer

 ljump #0A040h ; Begin execution of code from RAM.

;;
;;
;; Executing from RAM
;;

org 0040h

 move LC[0], #1000
delayLoop:
 move LC[1], #8000
 sdjnz LC[1], $
 sdjnz LC[0], delayLoop

;; Initialize serial port.

 move SCON.6, #1 ; Set to mode 1 (10-bit asynchronous).
 move SMD.1, #1 ; Baud rate = 16 x baud clock
 move PR, #009D4h ; P = 2^21 * 9600/8.000MHz
 move SCON.1, #0 ; Clear transmit character flag.

Data Transfer Operations
As mentioned above, two things about the memory map change when executing code from RAM. First, the
program flash is now mapped into data memory. This means that we can read data directly from the program
flash by using any of the data pointers, as shown below.

;; Read the banner string from flash and output it over the serial port. Since

Page 5 of 9

;; we are running from RAM, we can read from the flash directly without having
;; to use the Utility ROM data transfer functions (moveDP0inc, etc...).

 move SC.4, #0
 move DPC, #0 ; Set pointers to byte mode.
 move DP[0], #(stringData * 2) ; Point to byte address of string data.

stringLoop:
 move Acc, @DP[0]++
 sjump Z, stringEnd
 lcall #TxChar
 sjump stringLoop
stringEnd:
 move DPC, #1Ch ; Set pointers to word mode.

;;
;;
;; This portion of the code (addresses 200h and higher) will remain in flash.

org 0200h

stringData:
 db 0Dh, 0Ah, "Executing code from RAM....", 00h

Note that as shown in Figure 1, the SC.4 (CDA0) bit affects which half of the program flash (upper page or
lower page) is mapped into the data memory in byte mode. When using word mode pointers, the entire
program flash is mapped into data memory at once.

Second, while the flash memory is now accessible in data space, the SRAM is no longer directly accessible.
This means that to read from, or to write to, SRAM locations, the application must do so indirectly. Reading
from SRAM locations can be performed in the same way that code running in flash reads from flash memory
locations—it uses the Utility ROM data transfer functions (moveDP0inc, etc.). Since there are no similar
functions in the Utility ROM to perform indirect writes, however, the application must include a small function
that remains in flash which can be called by the RAM-resident code to perform a write.

The code below demonstrates both methods used to read and write the RAM variable varA, whose initial
contents are copied from flash to RAM along with the rest of the application code located in the address
range 0000h-01FFh.

 scall printVar
 scall incrVar
 scall printVar
 scall incrVar
 scall printVar
 scall incrVar

 move Acc, #0Dh
 lcall #TxChar
 move Acc, #0Ah
 lcall #TxChar

 sjump $

;;;
;;
;; Variables stored in RAM (program) space. They can be read using the
;; Utility ROM data transfer functions (such as UROM_moveDP0) and written
;; using the writeDP0 function which remains in flash.
;;

varA:
 dw 'A'

Page 6 of 9

;==
;=
;= printVar
;=
;= Reads the varA RAM variable value and sends it over the serial port.
;=

printVar:
 move DPC, #1Ch ; Word mode
 move DP[0], #varA ; Variable's location in UROM data space
 lcall UROM_moveDP0 ; Moves variable value into GR.
 move Acc, GR
 lcall #TxChar
 ret

;==
;=
;= incrVar
;=
;= Reads the varA RAM variable value, adds 1 to it, and stores it back in RAM.
;=

incrVar:
 move DPC, #1Ch ; Word mode
 move DP[0], #varA ; Variable's location in UROM data space
 lcall UROM_moveDP0 ; Moves variable value into GR.

 move Acc, GR
 add #1
 move GR, Acc
 lcall writeDP0

 ret

;==
;=
;= TxChar
;=
;= Outputs a character to the serial port.
;=
;= Inputs : Acc.L - Character to send.
;=

org 01F0h
 move SBUF, Acc ; Send character.
TxChar_Loop:
 move C, SCON.1 ; Check transmit flag.
 sjump NC, TxChar_Loop ; Stall until last transmit has completed.
 move SCON.1, #0 ; Clear the transmit flag.
 ret

;;
;;
;; This portion of the code (addresses 200h and higher) will remain in flash.

org 0200h

stringData:
 db 0Dh, 0Ah, "Executing code from RAM....", 00h

;==
;=
;= WriteRAM
;=

Page 7 of 9

;= This is a routine that can be called by code running in the RAM to load
;= a new value into a byte or word location in the RAM.
;=
;= Inputs : DP[0] - Location to write (absolute starting at 0000h) in RAM.
;= GR - Value to write to the RAM location.
;=
;= Notes : DP[0] must be configured to operate in word or byte mode as
;= desired before calling this function. Following a call to this
;= function, DP[0] must be refreshed before it is used to read data.
;=

writeDP0:
 move @DP[0], GR
 ret

When executed, the demonstration code outputs the following text (Figure 2) over the serial port.

Figure 2. Text output over serial port by demonstration code.

Conclusion
The Harvard memory map architecture used by the MAXQ8913 and other MAXQ microcontrollers allows you
to map different physical memory segments (such as the data SRAM) into either program or data memory
space. Executing portions of an application from data SRAM provides the potential for a performance boost
and reduced power consumption. The process does require additional application complexity.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Related Parts

MAXQ8913 16-Bit, Mixed-Signal Microcontroller with Op Amps, ADC,
and DACs for All-in-One Servo Loop Control

Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4458: http://www.maximintegrated.com/an4458
APPLICATION NOTE 4458, AN4458, AN 4458, APP4458, Appnote4458, Appnote 4458
Copyright © by Maxim Integrated Products

Page 8 of 9

http://www.maximintegrated.com/datasheet/index.mvp/id/6163
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ8913
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an4458

Additional Legal Notices: http://www.maximintegrated.com/legal

Page 9 of 9

http://www.maximintegrated.com/legal

	maxim-ic.com
	Executing Application Code from RAM on the MAXQ8913 Microcontroller - Application Note - Maxim

