Abstract: A DS4402 or DS4404 adjustable-current DAC is used to adjust the margin of a DC-DC converter's output voltage. This article describes how to properly select the resistor values in a DC-DC converter's feedback divider network when a DS4402 or DS4404 is employed in the design.

The Adjustable Power Supply

The DS4402/DS4404 DACs contain two/four 1P\textsubscript{C} adjustable current sources capable of sinking and sourcing current. A typical application for these DACs is margining the output voltage of a DC-DC converter. (See Figure 1.)

![Figure 1. DC-DC converter circuit with adjustable-current DACs used to margin the converter's output voltage.](image)

****OUT AND V_FB VALUES ARE DETERMINED BY THE DC-DC CONVERTER, AND SHOULD NOT BE CONFUSED WITH V_OUT AND V_REF OF THE DS4402/DS4404.****

The DS4402/DS4404 sink and source current from their OUT pins. Valid full-scale current values range from 0.5mA to 2.0mA. The value of the full-scale current, I_{FS}, is determined by the size of the resistor connected to the DAC's FS pin of the corresponding OUT pin. The source/sink current generated by the
DS4402/DS4404 is most commonly used to adjust the DC-DC converter’s feedback voltage-divider.

Determining the Relationship Between \(\text{V}_{\text{OUT}} \) and \(\text{IFS} \)

Choosing the right \(\text{IFS} \) depends on how much margin is desired on the DC-DC converter’s \(\text{V}_{\text{OUT}} \) pin. To determine this margin, we must discover the relationship between \(\text{V}_{\text{OUT}} \) and \(\text{IFS} \).

Summing currents into the \(\text{V}_{\text{FB}} \) node, we find that:

\[
\text{I}_{\text{RA}} = \text{IFS} + \text{I}_{\text{RB}} \quad \text{(Eq. 1)}
\]

Where:

\[
\text{I}_{\text{RB}} = \frac{\text{V}_{\text{FB}}}{\text{R}_{\text{B}}} \quad \text{(Eq. 2)}
\]

And:

\[
\text{I}_{\text{RA}} = \frac{\text{V}_{\text{OUT}} \cdot \text{V}_{\text{FB}}}{\text{R}_{\text{A}}} \quad \text{(Eq. 3)}
\]

However, since \(\text{R}_{\text{B}} \) and \(\text{V}_{\text{FB}} \) are constant, there is no change in \(\text{I}_{\text{RB}} \). Thus:

\[
\Delta \text{I}_{\text{RA}} = \Delta \text{IFS} \quad \text{(Eq. 4)}
\]

We are looking for the relationship between the margin on \(\text{V}_{\text{OUT}} \), \(\Delta \text{V}_{\text{OUT}} \), and the selected range of \(\text{IFS} \), \(\Delta \text{IFS} \). Since we know that the change in the \(\text{IFS} \) current equals the change in the current across \(\text{R}_{\text{A}} \), we subtract one set of \(\text{V}_{\text{OUT}} \) and \(\text{I}_{\text{RA}} \) values from another to determine the relationship between \(\text{V}_{\text{OUT}} \) and \(\text{IFS} \).

First, solving Equation 3 to find \(\text{V}_{\text{OUT}} \), we find that:

\[
\text{V}_{\text{OUT}} = \text{V}_{\text{FB}} \cdot \text{I}_{\text{RA}} \cdot \text{R}_{\text{A}} \quad \text{(Eq. 5)}
\]

Use Equation 5 to create two equations. For one equation, we choose the maximum margin on \(\text{V}_{\text{OUT}} \), \(\text{V}_{\text{OUTMAX}} \), and the maximum \(\text{I}_{\text{RA}} \), \(\text{I}_{\text{RAMAX}} \). For the other equation, we choose the nominal values for \(\text{V}_{\text{OUT}} \) and \(\text{I}_{\text{RA}} \), \(\text{V}_{\text{OUTNOM}} \) and \(\text{I}_{\text{RANOM}} \). Subtracting the two equations, we get:

\[
\frac{\Delta \text{V}_{\text{OUT}} = \text{V}_{\text{FB}} \cdot \text{I}_{\text{RAMAX}} \cdot \text{R}_{\text{A}} - (\text{V}_{\text{OUTNOM}} = \text{V}_{\text{FB}} \cdot \text{I}_{\text{RANOM}} \cdot \text{R}_{\text{A}})}{\Delta \text{I}_{\text{RA}} \cdot \text{R}_{\text{A}}} \quad \text{(Eq. 6)}
\]

Using Equation 4, Equation 6 translates into the relationship:

\[
\Delta \text{V}_{\text{OUT}} = \Delta \text{IFS} \times \text{R}_{\text{A}} \quad \text{(Eq. 7)}
\]

Equation 7 shows that the relationship between the margin on \(\text{V}_{\text{OUT}} \) and \(\text{IFS} \) is determined by the value of the resistor \(\text{R}_{\text{A}} \).

Calculating the Right Resistor Value for the Margin on \(\text{V}_{\text{OUT}} \)
Now that we know the relationship between V_{OUT} and I_{FS}, we can select the correct value of R_A and, thus, R_B to generate the desired margin on V_{OUT}. Since the full-scale current sink/source range of the DS4402/DS4404 is 0.5mA to 2.0mA, we select 1mA as the I_{FS} current for the DAC. To set this value, choose R_{FS} based on the following equation (Equation 1 in the DS4402/DS4404 data sheet):

$$R_{FS} = \frac{V_{REF}}{I_{FS}} \times \frac{31}{4}$$ \hspace{1cm} (Eq. 8)

With $V_{REF} = 1.23V$, we solve Equation 8 and find that R_{FS} needs to be 9.53kΩ to produce a 1mA full-scale current.

With the DS4402/DS4404 I_{FS} selected, we must determine the size of R_A to achieve the desired margin on V_{OUT}. A 2.0V V_{OUT} with a 20% margin requires ±0.4V of change. Sinking and sourcing settings of the DS4402/DS4404 will manage the sign. The change in I_{FS} equals the I_{FS} value of 1mA, and the desired change in V_{OUT} is 0.4V. After substituting for ΔV_{OUT} and ΔI_{FS} in Equation 7, we solve for R_A and get $R_A = 400\Omega$.

Determining the Relationship Between R_A and R_B

The feedback network of the circuit in Figure 1 is a voltage-divider with resistors R_A and R_B. Looking at Figure 1 and assuming that $I_{FS} = 0A$, we create a simple voltage-divider equation:

$$V_{FB} = \frac{R_B}{R_A + R_B} \times V_{OUT}$$ \hspace{1cm} (Eq. 9)

We assume that the desired nominal value for V_{OUT} is 2.0V and that the DC-DC converter has a feedback voltage, V_{FB}, of 0.8V. Substituting the values for V_{OUT} and V_{FB}, the relationship between R_A and R_B is determined:

$$R_A = 1.5 \times R_B$$ \hspace{1cm} (Eq. 10)

We use Equation 10 to solve for R_B, and get $R_B = 267\Omega$.

Conclusion

The resistive-feedback-divider network and the current-sinking/sourcing capabilities of the DS4402/DS4404 DACs control the margin of V_{OUT} on a DC-DC converter. The relationship between the full-scale current, I_{FS}, to the margin on V_{OUT} is determined by the value of the resistor R_A. By choosing the correct I_{FS} value for your application, you can determine the correct resistor values for the feedback divider network, and achieve the desired margin on V_{OUT}.

Related Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS4402</td>
<td>Two/Four-Channel, I²C Adjustable Current DAC</td>
<td>Free Samples</td>
</tr>
<tr>
<td>DS4404</td>
<td>Two/Four-Channel, I²C Adjustable Current DAC</td>
<td>Free Samples</td>
</tr>
</tbody>
</table>

More Information

For Technical Support: http://www.maximintegrated.com/support