APPLICATION NOTE 3659

Simple Circuit Converts +5V to -10V

Dec 14, 2005

Abstract: This simple charge-pump voltage inverter produces more than -10V at no load, and more than 200mA while the output voltage remains greater than the input.

The versatile switched-capacitor charge pump is easy to use and requires no inductor. It can double a positive voltage or convert a positive voltage to negative.

For some applications in which only a positive supply is available, the system must generate a negative voltage of larger magnitude than the positive rail. For that purpose, the circuit of Figure 1 inverts the input voltage and doubles the resulting negative output at the same time. The voltage inverter shown (IC1) converts a positive input to a negative output voltage, normally with an absolute magnitude lower than that of the input. But in this circuit, the two Schottky diodes and the two capacitors at the output produce a higher output voltage.

![Circuit Diagram](image)

Figure 1. This simple circuit derives -10V from +5V.

The expected output is \(V_{\text{OUT}} = -(2V_{\text{IN}} - 2V_D - I_{\text{OUT}}^* R_O) \), where \(V_D \) is the voltage drop across a diode,
I_{OUT} is the output current, and R_O is the output resistance. While the maximum expected voltage is -10V, overshoot across the capacitors due to parasitic inductance in the capacitors and traces produces more than -11V at no load (Figure 2).

![Charge-Pump Output Voltage vs. Current Graph](image)

Figure 2. The circuit in Figure 1 above produces more than -10V at no load, and more than 200mA while the output voltage remains greater than the input.

This design idea appeared in the May 26, 2005 issue of *EDN* magazine.

Related Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Free Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX889</td>
<td>High-Frequency, Regulated, 200mA, Inverting Charge Pump</td>
<td></td>
</tr>
</tbody>
</table>

More Information

For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3659: http://www.maximintegrated.com/an3659
APPLICATION NOTE 3659, AN3659, AN 3659, APP3659, Appnote3659, Appnote 3659
Copyright © by Maxim Integrated Products