APPLICATION NOTE 3536

Moving-Coil Meter Measures Low-Level Currents

By: Kevin Bilke, Applications Engineer
Jun 20, 2005

Abstract: The MAX4172 IC substitutes a current amplifier for the shunt normally associated with a moving-coil meter. This circuit allows use of the moving-coil meter, even when the meter current is a large fraction of the current being measured.

The display of choice for certain applications remains the large moving-coil meter. While a moving-coil meter may lack the accuracy of a digital panel meter, the perceived extra information derived from the needle's rate of change cannot be matched by the digital alternative.

It is not always possible to attach a current shunt to analog meters, when the meter current is a large fraction of the current being measured. Although a disadvantage, it can be overcome by driving the meter from a separate supply voltage (Figure 1). The circuit shown for the MAX4172 drives a large 8-inch meter with full scale of 15mA.

Figure 1. This circuit allows use of a moving-coil meter in applications for which the meter current is a substantial fraction of the current being measured.

IC1 was chosen from the many current-sense amplifiers available because it provides a separate supply-voltage terminal for the internal circuitry. (Other devices take power from the current being measured.)
IC1’s output current, I\textsubscript{OUT}, equals V\textsubscript{SENSE}/100Ω, where V\textsubscript{SENSE} is the voltage across R\textsubscript{SENSE1}. I\textsubscript{OUT} is boosted by the op amp and transistor, and the meter's full-scale current is easily changed by adjusting the value of R\textsubscript{SENSE2}.

This circuit also allows the meter display to be remote from the point of measurement. Note that the passive components are chosen for convenience rather than high accuracy, because moving-coil meters are not intended for applications that require precision measurement.

A similar version of this article appeared as a Design Idea in the March 3, 2005 issue of EDN magazine.

Related Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Free Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX4172</td>
<td>Low-Cost, Precision, High-Side Current-Sense Amplifier</td>
<td>Free Samples</td>
</tr>
<tr>
<td>MAX495</td>
<td>Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps</td>
<td></td>
</tr>
</tbody>
</table>

More Information

- For Technical Support: http://www.maximintegrated.com/support
- For Samples: http://www.maximintegrated.com/samples
- Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3536: http://www.maximintegrated.com/an3536
APPLICATION NOTE 3536, AN3536, AN 3536, APP3536, Appnote3536, Appnote 3536

Copyright © by Maxim Integrated