Abstract: Current-limit switches are virtually ubiquitous in system controls. They provide a safe means for regulating the current delivered to a load circuit. The switches allow the load current to increase to a programmed limit but no higher. This application note illustrates the implementation of a digitally programmable current-limit switch using MAX890L a current-limited, high-side P-channel switch and MAX5160 digital potentiometer.

Current-limit switches are virtually ubiquitous in system controls. They provide a safe means for regulating the current delivered to a load circuit. The switches allow the load current to increase to a programmed limit but no higher. Typically, the current limit is a function of the voltage across an external resistor, produced by the current from a fixed source internal to the switch IC. This voltage serves as the reference for an internal current-limiting amplifier. By replacing the resistor with a digital potentiometer, you can easily program the current limit (see the figure below). IC1 is a current-limit switch with a maximum programmable limit of 1A. The limit equals 1380/R_SET, where R_SET is the resistance between pins 5 and 6 of IC2. IC2 is a 50kΩ digital potentiometer whose resistance is programmable in 32 equal increments. With active-low CS held low, high-to-low transitions at active-low INC(pin 1) increments IC2's internal counter.
Figure 1. You can program a current limit to 1A in 32 equal increments by using a digital potentiometer.

These transitions increase the resistance between W and L when U/active-low D is low and reduce it when U/active-low D is high. IC1 includes a thermal-shutdown capability that turns the load current completely off when the chip temperature exceeds 135°C. It restores the load current when the temperature cools by 10°C. If the short-circuit fault is still present, the switch cycles off and on, yielding a pulsed load current. An open-drain fault output (pin 8) switches low when the load demands current beyond the programmed limit, enabling an external system to monitor the condition of the current switch.

A similar version of this article appeared in the August 17, 2000 issue of *EDN*.

Related Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX5160</td>
<td>Low-Power Digital Potentiometers</td>
<td>Free Samples</td>
</tr>
<tr>
<td>MAX890L</td>
<td>1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown</td>
<td>Free Samples</td>
</tr>
</tbody>
</table>

More Information

For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 298: http://www.maximintegrated.com/an298
APPLICATION NOTE 298, AN298, AN 298, APP298, Appnote298, Appnote 298
Copyright © by Maxim Integrated Products