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Abstract: A descriptive tutorial is presented for compensating pressure sensors using the MAX1463 Low-
Power, Two-Channel Sensor Signal Processor. A mathematical description of the algorithm is given with
an example of a pressure sensor compensation using real data. The low level transducer signal is
amplified and temperature compensated to form a complete high signal level sensor.

The MAX1463 is a fully digital, high-performance signal conditioner with multi-channel inputs. It has
analog and digital outputs and supports 4-20mA output applications. It can be programmed to correct the
nonlinearities and temperature-dependent characteristics of sensors.

This document describes the procedures to compensate and calibrate a sensor signal that is applied to
one of the MAX1463 ADC channels, providing offset and span correction over the specified temperature
range. It is assumed that the MAX1463 VDD supply voltage does not change during the compensation
process and operation of the device.

The data presented in this document is real data, acquired from a piezoresistive pressure sensor that
was used as an example to present the compensation algorithm.

Input Parameters
The user must define some input parameters for the application. They are:

Tmin = minimum temperature, in degrees Celsius

Tintr = intermediate temperature, in degrees Celsius

Tmax = maximum temperature, in degrees Celsius

Pmin = minimum pressure

Pmax = maximum pressure

Vmin = desired MAX1463 output, at the minimum pressure, in volts
Vmax = desired MAX1463 output, at the maximum pressure, in volts

The next limits are application dependent, and may differ for other applications:

Tmin = —40 Pmin = 0 Wmin = 0.5
Tiney .= 25 Pmax = 15 Vmas = 4.5

Tmax = 125

For pressure nonlinearity correction, let's define Pmed as the sensor excitation midpoint, as:
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Pmed i= +lmin + Pmin

Pmad = 7.5

For better performance and range of the MAX1463 ADC converter it is necessary to maximize its useful
range by adjusting the appropriate coarse offset and PGA settings. The user must select the
temperature for which the sensor sensitivity is the highest and apply minimum and maximum sensor
excitation. The user should then select the PGA gain and coarse offset settings that maximize the ADC
output at these conditions.

The ADC acquired data must then be entered in the matrix below. Each row of data has the normalized
ADC reading for the minimum, medium and maximum sensor excitation at the indicated temperature. It
also has the ADC reading for the internal MAX1463 temperature sensor, and the DAC output voltage
(through either the small or large op-amp) for a fixed normalized digital input of -0.5 (DACinM) and +0.5
(DACInP)

cemperature (= 4 {(column index of iemperature data)
DACInM = - 0.8
Dhlin® = 0.8

The acquired data (ad) matrix is shown below, with the ADC results enteredin hexadecimal, and the

DAC output voltage readings entered in decimal. Due to limitations of the software, hexadecimal values
must be entered with a leading zero (0).

i ] Pmin Prmad Pmax cemperature DACInM DACinP
ad 1= Tmim 0AMDER  00510h 0SFECh 03F11h 0.9943 3.9802
' Tintr O0B2Z9Eh OFFFEh 04CF3h 03397h 0.9934 3.9815

Tmax 0B7BFh O0FSBSh 03373h 02384k 0.9%%15 3.%828

To convert the 2's complement hexadecimal values in decimal values (between -1 and +1), the following
function is defined:

16
hadix) = if|mppi X2 X
215 :1'5'

The decimal representation of the acquired data matrix is then defined as:

o Pmin Pmed Pman cemperature DACInM DACine
Tmin  h2d(ad, ) h2d(ad, y h2d{ad, 1) h2d{ad, ) 0.9943 3.9802

Tintr h2d(ad, ) h2d(ad, ) h2d(ad, ) hzd{ad, ) 0.9934 3.9815
Tmax  h2d{ad, ) h2dad, ) h2d(ad, ) had{ad, [y 0.9515 3 2828

dara =

With the defined user values, the above matrix is shown as:

0 1] 7.5 18 4 —0.5 0.5
dat =40 =0.6716318%3 O0.03955D0T78 0.T4551392 D.49%27063 0.9943 3.9802
ata = —-

25 —0.60455322 -2.44140625°10 1 0.60116577 0.40304565 0.9934 3,9815

125 =0.56448364 =0.08041382 0.4013165 0.26%9653332 0.9915 3.3933828

Let's define other parameters that will be used throughout the document:
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Data Modeling

This section shows the mathematical data modeling of the sensor data, temperature data, and DAC data.
The derived functions for the sensor, temperature, and DAC will then be used as their model.

Sensor Data Modeling

For the sensor data modeling, we will first model the sensor data at each individual temperature. We will
then model the variation of the coefficients over temperature. The coefficients are found solving a linear
system of equations, described as:

AxXx=Db
x = A-lb

where "A" is a square matrix, and "x" and "b" are column vectors.

The inverse matrix, in this case, is defined as:
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1 Pmin Pmin?
Pinv = |1 Pmed Pmed®
1 Emax Pmaxi'

For the minimum temperature, the second order coefficients that model the variation of the ADC data

over pressure are given by:

a = Pinwv:-Ptmin

=0.G6T7LE9LED
0. 09518433

a=
—1_ EOZOZEIEL0 "

And the equation that models the ADC output over pressure at this temperature is given by:

PO(E] = &, + a,-F + a,- 27

For the intermediate temperature, the second order coefficients that model the variation of the ADC data

over pressure are given by:

b = Pinw-Peint

0. 60455322
b=| o.08076782
-2.5770399310 °

And the equation that models the ADC output over pressure at this temperature is given by:

FLIP) = by, 4 by P + b P*
For the maximum temperature, the second order coefficients that model the variation of the ADC data

over pressure are given by:

o = Pinv Pomax
0. 56446364

0, 06465851
-1.54622396°10

c =
And the equation that models the ADC output over pressure at this temperature is given by:

P2{P) = g, + € F g0 P°
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Figure 1. ADC output x sensor excitation (psi).

Now, let's combine these equations to include the temperature dependency. Basically, we will find
second order equations that model the coefficients variation over temperature. The zero, first and second

order coefficients on PO(T), P1(T) and P2(T) are given by:

i, a, 3
P':" = blil p.j_ K b, 92 = hﬂ
“g < o

For the temperature modeling of the coefficients, we now need to define the following matrix:

1 Tmin Tmin®
Timw = |1 Timkr Tints®
1 Tmax Tmax®

The zero order coefficients dependency over temperature can be found as follows:
d == Tinwv.-pd

—0.62654423
d=| % 75429295-10 "
=3, BIL55663710 ©

And the zero order coefficient function is given by:
CO(T) = d, +d,-T + &7
The first order coefficients dependency over temperature can be found as follows:

e = Tinwv-pl

0.08594475
e = |-2.16274184-10 °
3.67880275-10 "

And the first order coefficient function is given by:
CIIT) = &, + &7 + efT?

The second order coefficients dependency over temperature can be found as follows:
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£ = Tinwv-p2

=3 .25603036°10 °
£ = | 3. 0529908510
=1.34811658°10 "

And the second order coefficient function is given by:

C2UT) = £, + £,-T + £,-7°

The ADC output, as a function of both temperature and pressure is then given by:

Pdata [T,P) = CO(T) + CLIT}«F 4 C2(T).p*

To verify the validity of the above equation, let's compare the data matrix with the values from the Pdata

function.
o 0 7.5 15 4 =0.5
data —40  —0.6T16918% 0.03955078 0.7T4551392 0.4927063  0.9943
25 =D.&D455322 -2.44140625'lﬁ1 D.G0LLGETT 0O_40304565 0.9334
125 —0,.56448364 -0, 06041382 0.4019165 0.26965332 0.9915

pdata (—40,0) = -0.57LGSLES
pdara (25,0} = -0.60455322

pdara (125 ,0) = =0.56448364
pdara (—40,7.5) = 0.03955078
pdata (25 ,7.5) = =2.44140625-10 °
pdata (125 ,7.5) = =0.08041382

Pdaca {=40,15) = 0.74551392
Pdata {25 ,15) = 0.60L1E577
Pdata {125 ,15) = 0.4019165

Temperature Sensor Data Modeling

The internal MAX1463 temperature sensor must also be modeled. The ADCtemperature data was
previously defined, and is given below:

0. 42927063

Tamp = 0.40304565

0.26865332

The second order temperature coefficients are then given by:

t

t

Tinw- Tamng

D.43T254593
=0.00137526

2.75582978410

The temperature ADC output, as a function of temperature is then given by:

Tdata (T) = t, + £,-T + £,-7°

0.5

3.9802
3._9815
3.9828
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Figure 2. temperature ADC output x temperature(°C).

For verification, the values below show the input temperature data, and the values obtained from the
Tdata function.

0. 40304565 Tdata (Tintr} = 0.40304565

0. 4F2TOEI Tdata (Tmin} = 0.4927063
Temp =
0.26965332 Tdata (Tmax} = 0.269R5332

DAC Data Modeling

The MAX1463 DAC must also be modeled for properly adjusting its input values to the variations over
temperature and process (gain, offset). The DAC data was already defined, and is given below, for both
the Minus input (-0.5) and the Positive input (+0.5):

0.9%43 3,9802
DacM = 0, 5534 Dack = 3.%818

0,991% 3.5828

The DAC gains for the input measured values are defined as:

Dack, - Dach,
DACIiAP - DACIinM
2. 0850
DacP, - Dach,
DacGain = Thelne — Oheim DacGain = 2.9881
ne = 2.9913
DacP, = Dach,

DACLINP - DACInM

The DAC offsets for the input measured values are defined as:

Dack, = DacGaingDACInP 2. 48728
DacOfEgat = | DacP, — DacGain, -DACinP PacOEEset = ( 2.43‘145)
Dack, = DacGain, DACInP 2.,48715

The coefficients of the second order function that represents the DAC gain over temperature are:

g ® Tinv-DacGain
2. 9RTIEE0L

g = | 3.36783217-10°°
-1.11888112-16°°

And the DAC gain function is then given by:
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dacgain{T] = g, + 9,-T + gg-T?
The coefficients of the second order function that represents the DAC offset over temperature are:

h == Tinwv:Dacbhffaetr
2.48740951

h=| 2.52447552-10°"
—1 . EEZOBIGE-1D °

And the DAC offset function is then given by:
dacoffset {T) = h  + h-T + h-T°

The final DAC characteristics can then be represented by:

vdac (T ,dacin} = dacgain (T} dacin + dacoffeec (T
dacin = —-0.4,-0.79 .. 0.8

5 =

4
Vdae (Trmin, dacin) L
—_— . 3
Vebac (Tintr, dacing j,.rl""'
Vdae (Tmax, dacin) =

1

i} e

-1 -07% 05 025 0 025 05 075 1
dacin

Figure 3.

For verification, the values below show the input DAC data, and the values obtained from the Vdac

function.
0.9943 3.9402
Lack = 0.9934 DacP = 3.%815
0.9915 3,9%828
vdac {Tmin , DACinM) = ©.%9%43 vdac (Tmin ,DACINnE) = 3.9802
WVdac (Tintr , DACLinM) = ©.%%34 Vdac (Tintr ,DACINF) = 3.9815
Vdag {Tmax , DACLInM) = 0,%%15 Vdac (Tmax ,DACInF) = 3.9828

Temperature Sensor Offset and Nonlinearity Correction

In order to minimize the temperature related coefficients, let's arrange the temperature characteristics,
centering it at zero, and then amplifying it.

To center the data points, the temperature data offset is defined as:

ToEE = ‘Tdata {Tmin) ; Tdata (Tmax] Tdata (Tmin)

Toff = -0.38117981
The offset corrected Tdata is then given by:
OCTdata {T] = Tdata (Tl + Toff
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Figure 4. Offset corrected temperature data x temperature (°C).

The next step is to expand this function so that its minimum and maximum values are -0.9 and +0.9
(90% of the useful range). This is done to reduce the values of the temperature related coefficients that
will be calculated in this algorithm. The temperature gain is given by:

0.9 = {=0.%)
OCTdata { Tmax) — OCTdata {Tmin)

regain =

rhgain = —8 DES83LTL

As rtgain is outside the -1 to +1 values, it needs to be scaled down by a power of 2.

ntgainshfca = gaine— | regain |
ntempé—1
while gains 1

g,in(_%ff‘

ntemp &= ntemp: 2
log (ntemp)
log (2}

ntgainshits = 4

The final tgain is then:

regain
grtaainahEcs

tgain =
rgain = =0.50436448

After multiplying tgain by OCTdata, the result needs to be scaled back up, shifting the result to the left
(multiplying by powers of 2) by the same factor that was used in the downscaling process (ntgainshfts).
Thefinal Amplified Offset Corrected Temperature data is then given by:

ADCTdara |T) = 2TRIANSRESS 4o n.ooTdata [T
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Figure 5. Amplified offset corrected temperature data x temperature (°C). where
AGCTdata (Tmin) = =0.9 ACCTdata {Tmax) = 0.9

The next step is the temperature nonlinearity correction. The linear coefficient of AOCTdata, using its
endpoints, is calculated as:

AOCTdata (Tmax] = ACCTdata (Tmin)

mt =
Tmax — Tmin

mt = 0,010%0500
And the nonlinear function can be expressed as:

Tronlineariey {T) = AOCTdata {T) — mt-{T — Tmead)

0.02

0.0

RN
Tronlinearity (T) 0.01 A
001 / \\
L/ \

-50 0 50 100 150
T

Figure 6. Nonlinearity of Temperature data x Temperature (°C).

We need to implement a function that represents the opposite of the nonlinearity function, using the
AOCTdata(T) as the independent variable. As AOCTdata(T) is not linear, the best way is to use a fitting
function to a higher order polynomial function. In this case, a fourth order polynomial function was
chosen to minimize the nonlinearity errors.

wdata, _ .. = AOCTdata (T}

ydata, _ .. % =Tnonlinearity (T)

The coefficients of the fourth order polynomial function are given by:

enl @ linfit {xdata ,ydata Fd)
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And the Temperature Nonlinearity correction function is given by:

Tnl{T) = tnl, + tnl -ACOCTdata (T + l;nli-.n.CICTdat.a[Tl'z
+ tnl,-AOCTdata (T) * + tnl,-AOCTdata {T)*

The offset corrected and nonlinearity corrected temperature data is now given by:

Tempdata {T) = AMCTdata(T] + Tal (T)

From now on, all the temperature related coefficients will be calculated using Tempdata as the
independent variable, as it is normalized and linear.

v

05 ]

/

Tempdata (T) 0 / “
-0.5

-
-Gl 0 a0 100 150
T

Figure 7. Linear temperature data x temperature.

The ideal temperature data is given by:

Id=al (T} = w.“ - Tmed)
Tmax = Tmin

1e07

5e108 ]

[Tmmma{n-mm m] \ AN /M
| os-os) \/ N/ \

Hedr?

Ao’
=50 ] 50 100 150
T

Figure 8. Linearity error of tempdata(T) x temperature (°C).

Sensor Signal Data Offset, Gain and Nonlinearity Correction
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The sensor signal characteristics are also dependent on temperature and the excitation source

(pressure). The objective here is to eliminate the temperature dependency and linearize the pressure
response characteristics.

Just as the case of the temperature signal, we will maximize the response to 90% of the total useful
range, yielding -0.9 for minimum pressure, and +0.9 for the maximum pressure.

The raw sensor data is depicted below, for four different temperatures

Pdata (Tmin. P} 0.5
Pdata (Tint1, P}
Pdata (Tint2, P}

Pdata (Tmax, F) .5 M"’

-1

L1 3.75 75 1125 15
P

Figure 9. Raw sensor data x pressure (psi).

The linear coefficients for these curves, using the endpoint values, can be given by:

Pdaca{T, Pmax) = Pdata (T ,Pmin}

mp {T) =

Pmax - Pmin
0.1
m " >
mp
‘\M“‘h—_‘_
.06
-5 0 S0 100 150
T

Figure 10. Sensor sensitivity x Temperature (°C). The pressure nonlinearity and offset correction function
can be expressed by:

pnl (T ,P) = Pdatal{T,PF] = mp(T)-{F = Fmed)
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Figure 11. Sensor Offset and nonlinearity x Pressure (psi)

The objective now is to model the reciprocal of the pnl(T, P) function for four different temperatures, and
then model the variation of the coefficients over temperature.

§ = 0., 150

. Pmax = Pmin |
- —
FF, Pmin + T5o i

For the minimum temperature, the coefficients that approximate -pnl(Tmin, P) over a third order function
of Pdata(Tmin,P) can be found by:

. 0.03954258
axdata, = Pdata(Tmin, FF,]) -
4 4 ace =4.15623225"°10
- i 000525103
aydata, = —pnl C_m;n,?i';)

ace 8 linfik {axdata ,aydata ,F3} 5.5277045710 °

For the first intermediate temperature, the coefficients that approximate-pnl(Tintl, P) over a third order
function of Pdata(Tint1,P) can be found by:

bxdata, 1= Pdata(Tintl ,PP_:‘_)

bydata, = —pnl(Tintl,PE})
boo = linfit (bxdata ,bydata (F3)

—0. 00650954

=5, 42EEEE5I 10 C
BSE " | 5. no4ie928

3.47T4E983-10

For the second intermediate temperature, the coefficients that approximate -pnl(Tint2, P) over a third
order function of Pdata(Tint2,P) can be found by:

r:s:dataj = P&ata("rintz ,PPD

cydataj = —pnl(.Tinl:z ,PPD

cee 1= 1infie (exdara ,cydara ; F3)

0.0334823

T.FTTELIRZ=10 T
0.003402T7

2.31253011%10 "

CCC =
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For the maximum temperature, the coefficients that approximate -pnl(Tmax, P) over a third order function
of Pdata(Tmax, P) can be found by:

d.'uﬂataj = Pdata(_me,PPD

dyﬂataj = - pnl{.‘l‘ma_x . PPD
dee = linfie (dxdara ,dydata ,F31)
0.08043792

5, 996500310
6.00373187

2. TTSIOATE-10

dee =

]

The matrix of correction coefficients for the calculated temperatures is given below:

ace, acc, aco, aco,
boe, koo, boo, boc,
ceoef =
cce, cog, £oC, Ceg,
df:r:n r:i.c'_'c1 dea N dr_'r_'a

—0.03954258 —4,15623225-10 0 0, 00525103 &, 827704510
—0.00650954 —5,42858853-10 0 0,00416%28 3,47T48583-10 °
D.D03348323 2.2'1"1'-51352'].[!_4' D.0D34D27T 2.31253{)11'10_5

cooel =

0,08043792 & OQELODZ*10 Y 0.00373187 2, TTEIOATELOD ©

The variation of those coefficients over the temperature data can be modeled by third order equations,
solving a linear system:

Tempdata { Tmin) Tempdata { Tmin} : Tempdata {Tmin) *
Tinv: = Tempdata (Tintl) Tempdata (Tinel] ? Tempdata (Tinzl) ’
Tempdata {Tint2) Tempdata(Tint2]? Tempdata|Tint2)?

Tempdata { Tmax) Tempdata { Tmax} : Tempdata { Tmax) :

e e

ceg = Tinvi-cooef

The correction coefficients are:

0,01281822 E.Eﬂ?ﬂ??d!'ll‘.‘l_"' 0O.00ZE9785 2.?3194$21'LD_I"
coe 0, 06665273 4.58333551°10 0 -0, 00133171 -1.99316085°10 ©
D. 00986847 ']‘.32']‘]22341.'1!]1 9.?97594131‘10_‘ 1.14513].24'].13_5

3.84235715°10 °  1.30502778°10 ' 6.02146404°10 ' 5, 7200028310 °

And the zero, first, second and third order coefficient functions are given by:

KL {T) = e, o+ otee Ia-'rempdar.a (T} + ::cer-Tempda:a Tt e, Iﬂ-Tempda'r_a (T
WL1{T) = tes,  F tcclll-'rempdatal:'.rr + :cczrl-Tempda:a it oo, I._-'I‘empdata (T ?
RLZ {T) = tes, o+ tccllz-']:'empdata (Tl + r.cczrz-Tempdar.a it o+ too, Iz-Tempdata () ?
BL3 (T} = teg, , + tec, ,-Tempdata(T} + tec, ,-Tempdata(T)” + tec, ,-Tempdata (T)’

The offset and nonlinearity correction function is then given by:
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OLE(T,B} = NLO{T) + NL1(T)-Bdata(T, P} + NL2 (T}-Bdata (T,B)° + NL3 (T)-Bdata (T ,B)°

And the final offset and nonlinearity corrected sensor data is now given by:

oLcPdata (T, 2} = Pdata{T,P] + OLO(T,E)
1
D 5 F.‘:
ﬂjpdat,a {Tmin, P} -ﬁ ar
OLCPdata (Tink1, P)
== 0
OLCPdata (Tint2, P)
OLCPdata (Tmax, P) -
0582 ==
-1
[¥] 3.75 ] 11.25 15
P

Figure 12. Offset and nonlinearity corrected sensor data x pressure (psi).
The next step is to remove the temperature dependency of the sensor sensitivity.

The span function over temperature is given by:

span (T} = OLCPdaca (T ,Pmax) - OLCPdata (T ,Pmin)

The sensitivity correction coefficients that approximate 1/span(T) over a 4th order function of

Tempdata(T) can be found by:

Tempdata (T}

-1
span (T}

go = linfit (xdata .ydata ,F4)

x0aLa; _ pin

¥data, | qmin

0. 86482724

0.18732712

BC = 0.,007TT0573
=0.00850418
=0.00134489

And the sensitivity correction function can then be described by:

SensCorrection(T) '= 8o, + sc,-Tempdata {T) + sc,-Tempdata{T) ..

+ g, -Tempdata (T} + sec,-Tempdata (T) *
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Figure 13. Sensitivity correction function x temperature (°C).

The corrected Sensor data is then given by:

Chdara (T ,P} = SensCorrection (T)-0LCPdata(T,BE]

The final data will be normalized to -0.9 for the minimum pressure and +0.9 for the maximum pressure.
The normalization factor is given by:

0.9 = {=0.9}

£ =
REACEST = Srdata(Tmed,DPman) — CPdata [Tmed , Bmin]

nfacror = 1.799993912

And the final coefficients for the sensitivity correction function is then given by:
nec = nfactor-sc

1.55668827
0.337188686

nec = 0.0138775
=0.00990751

—0. 00243063

Where the normalized sensitivity correction function is given by:

nSensC (T) = nse, + nse,-Tespdata {T) + nsc -Tespdara (T) 7 ..
+ nse, Tempdata (T) ' + nsc,-Tempdata (T} "

The value of nSensC(T) has to be between -1 and +1 for the whole range of temperature. To ensure that
this is true, we have to find the power of two divisor that scales back nSensC(T).

nSengVector, = |ngenac{T) |

— Tmin
max {nSensVector) = 1, 86258792

nagainshfes = gaineé—max [nSensVectar)
ntempé— 1
while gains 1

gaine— gazin

T emnpE— ntenpe 2
Lag {Atems)
legi2)

nagainshics = 1
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The final set of sensitivity correction coefficients is then given by:

nac

En = —_—
se znﬁgalnuhr:u

0.77634414
D.1EB59433

Ense = 0.00693675
=0. 00495376

0. 00121041

And the final sensitivity correction function is then given by:

EnSensC (T} = fTI-B'Cq + fnse-Tempdata (T) + fose - Tempdata {T) CE
+ fnac, Tempdata (T} + fasc,-Tespdata (T}’

The final normalized corrected sensor data is then given by:

nCPdava (T ,B) o= 2FoFninehite goc e ner (T) -OLCPdata(T , B}

1
0.8 -

04

0.4
nPdata (Tmin, F) 0.2 ]

nCPdata (Tmed, P) 0

nCPdata (Tmax, Py -0.2
== 04 -

0.6

-0_? =

0 25 5 7.5 10 12.5 15
P

Figure 14. Normalized Corrected Sensor Data x Pressure (psi).

At this point, the sensor data is normalized to -0.9 to +0.9 for the minimum and maximum sensor
excitation. All the nonlinearities have been corrected and the temperature dependency is removed. It is a
very linear signal with respect to the excitation (pressure).

DAC Correction

This step is required to correct the nonlinearities and temperature dependency associated with the
MAX1463 DACs, when an analog output is required. The minimum and maximum output voltages
associated with the minimum and maximum sensor excitation were already defined, and are given by:

Vmin = 0.5
Ymax = 4.5

The offset can then be defined as:

offget = +r|1in + Vmin

offgar = 2.5

But the target offset value has to compensate for the DAC offset variation over temperature, which is
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given by:

Offset = dacofEset [T)
13 T =
cargetOEfger {T) dacgain (T}

The dac offset correction coefficients that approximate targetOffset(T) over a second order function of
Tempdata(T) can be found by:

wdata, .. = Tempdata (T}
}'\dﬂt-ﬂf_ Tmim targetOEEger (T}

dae 5 linfie {xdata ,ydata F2)

0. 00419896
doc = | 1.4322853-10°
1.03668527-10

4.3

425\

1000 » targatOffset (T) \

4. S
415
-5 L1} ] 100 160

T

Figure 15. Target DAC input value x Temperature (°C).
And the DAC offset correction function can then be described by:
dacOffeetlorraection (T} = dog, + doc,-Tempdata (T] + doc,Tempdata{T) :

The DAC gain also has to be corrected for temperature variations. The function that corrects the DAC
gain variations over temperature, and also adjusts the signals for the output span is given by:

. . Vmax = vmin 1
cargecZain{T) = 0.9 — (—0.%) dacgain(T)
0.7445
01,744 \-..
targetGain {T) 07435

0.743 <

0,7425

i 0 50 100 150
T
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Figure 16. DAC gain correction x temperature (°C).

The dac gain correction coefficients that approximate targetGain(T) over a second order function of
Tempdata(T) can be found by:

wdata, _ . " Tempdata (T}

Tre
ydata, _ .. " targetGain (T)

dge = linfit (xdata ,ydata ,F2)
0. 74354735

dge = |—7.48388083-10""

Z.41401028-°10 °

And the DAC gain correction function can then be described by:
dacGainforrection |T) = dac, + dge,-Tempdata (T} + dge,-Tenpdata (T) ’

The final DAC input, as a function of temperature and pressure, is then given by:
dacin (T ,P) = dacGainforrection(T) -nCPdata (T ,F] + dacOffsetlorrection|T)

And the final DAC output over the sensor excitation (pressure) is shown below, for various temperatures.

4 -""""
’,p"

Vdac (Tmed, dacin (Tmed, F)) 4 7
Mdac {Tmin, dacin {Tmin. P}) f’,«""—
Vdao (Tmax, dacin (Tmax, P)) 2 /

1 -~
~

0 3.75 Th 11.25 15

0

Figure 17. DAC output (V) x pressure (psi).

Compensation Coefficients and Equations

This section summarizes the compensation coefficients and equations that need to be implemented in
the MAX1463. Note that the MAX1463 does not calculate the coefficients, as these need to be
calculated using the algorithm described in this document.

The temperature sensor data is shown as Tdata(T), and is the result of the ADC conversion of the
internal MAX1463 temperature sensor. The sensor data is shown as Pdata(T), and is the result of the
ADC conversion of the sensor signal.

The program needs both the temperature sensor data, and the sensor signal data. As the temperature
rate of change is much slower than the sensor signal data, the user can decide to do a temperature
ADC conversion on a much slower rate than the sensor signal, typically once every few hundred sensor
signal conversions.
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The following functions are defined to convert the calculated coefficients to a two's complement
hexadecimal representation. Note that the digitized coefficients may differ from the calculated ones due

to quantization on a 16-bit level.

sign{x]} = Lf({x< 0,0,1}

ipix)l = | if(|eeil (x|l - J=||= |Elaas(|=x]) - |=x|| . floccix) ,eeil (x)) 4if x=0
P (| cedl(x]) — || |= | floos(|x|) - |x]| . .ceilix)  floor{x)) 4if %<0

dznid) = ie(]d]e 1,402 a) - signtd) 2" + 2% ipid) - signid)-2°% + 2%

Compensation Coefficients

Toff = —0_38117981% 42k [Toff) = =£15h
tgain = —0_. 50436448 d2bh (tgain) = BETLR
ntgainshfcs = 4 d2h (ntgainshfes)l = 4h
[-0.01513219 ﬂﬂh(-t.nl;) = Fellh
-5.655038R5 10 " d2h{tnl]) = ffedh
enl = | 0.0186553 uzh(‘_n;nl;) = 263k
6.97ERTTES-10 " d2h(tnl]y = 17h
T e
326173679410 d2h{tal]) = 1k
||' 0.01261622 £, 60TEZTA10 © 0, 00369785 2.T73TO4B21-10 °
- 0.0B865273 4.58333551-10 1 -0.00133171 -1.99316083°10 °
O.0O09&EER4T '1'.3-2'1'3223{'10_5 9."J'B"J'E-B'I.Bl'll:l_1I 1.1451312{‘10—5’

| 3.24238719-107%  1,30502778-10  €,02146404-107° 5, 72800283-107°

dihftec, ) = 19dh  d2h(tec, ;) = 3h d2h{tec, ;) = 79h d2hftcec, ) » 1h
deh(tes, [ - 888h  d2h{tee, ) - fh d2b(tes, ) - ffddh dihftee, ) - £££fh
d2hftec, ) = 13dh  d2b(tes, ) = 0 d2h(tes, ) - 20h d2hftes, ) = 1h
d2hftes, o) = ¢ dzhtes, ;) = 4h  d2h(tes, ) = 4k dzhftes, ) = ¢
0.7TEIL4L4 dzk{fnsc) - 63alh
O.1EE52433 azh{Ensc) = 15%4h
fnse = D.00693ETS
2 =
~0.00495376 dzh(fnse,) = o3
6.60121041 d2b{fnme ) - £fSeh
d2b{fnsc) - Efdeh
0.00415896 d2b{dos) = Bak
doc = | 1.4322883-10 ° dzh{doc) = ©
1.0366E527-10 d2h(des]) = 3h
0.74354735 ﬂﬂh(_ﬁg¢;) = BE2dh
doge = |-7.46388083-10 " dzh{dge]) = £fesh
2.41401028-10 " d2h(dge]) = 1k

Temperature Loop Compensation Equations
The following set of equations provide correction on the MAX1463 Temperature Sensor data.
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0CTdata (T} = Tdata{T) + Teff

AOCTdata (T} == 20FOaimshitd . oo in-oCTdata {T)

Tnl (T} := enl  + tnl, -AOCTdata (T) + tnl -ACCTdaca (T} P
+ tal,-A0CTdata (T} ' + eal,-ROCTdata (T)*

Tempdata (T} = AOCTdata (T} + Tnl{T)

The next set of equations provide correction on the sensor signal data.

HLO(T) i® tog, , + teg, -Tempdata(T) + tec, -Tempdata(T)® + tee, ,-Tempdata(Th?
HL1(T) i® tog, , + teg, ,-Tempdata (T} + tec, -Tempdata(T)® + tee, ,-Tempdata(Th?
HLZ(T) = tog, , + teg, ,-Tempdata (T} + tec, -Tempdata(T)® + tee, .-Tempdata(Th?

L3 (T) = tog, , + teg, ,-Tempdata (T} + tec, ,-Tempdata(T)® + tee, ,-Tempdata(Th?

EnSensC (T i@ fnsc, + fnec-Tempdata (T] + lh‘lﬁn:i-'I‘dlrr:;;td't'l'.&{"l"}2
+ Ensc, Tempdata (T} + Ensc,-Tempdata (T) '

The next set of coefficients and equations provide correction on the MAX1463 DAC data.

dacOffeecCorrection (T) = ch.‘.'r_, + ducl-Tuwdata {T) + docz-'l‘uwpdaca 1"1'!1

dacGainforrection{T) = dgo. + dgo -Tempdata (Th d.gcz-"hwpd-m;uﬂ'ﬂi

Sensor Signal Loop Compensation Equations
The following set of equations provide correction on the MAX1463 Pressure Sensor data.

OLCIT, B} = NLO(T) + WL1{T) Pdata(T,P} + NL2 (T) -Fdata (T,F) 7 + NL3 (T)-FdataiT,?) "’

oLCPdata (T ,F) = Pdata(T,P) + OLC(T,F)

acpdaca (T, 8] = 2" ppaanae (T) -OLCPdata (T, B)

dacin (T ,P) = dacGainforrection(T) -nChdata (T ,P) + dacOffsetCorrection(T)

At this point, just write the final result, dacin(T,P) to the DAC input to obtain the compensated output,

and return to the beginning of the sensor signal loop. The user may implement a counter to keep track of
the number of sensor signal conversions, and do a temperature loop every so often.
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