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Memory iButtons are high–capacity, general–purpose electronic data carriers, each with a registered serial number.
Organized like a floppy disk, Memory iButtons can store data files for multiple applications within the same device.

This manual summarizes technical and mechanical specifications for the iButtonTM family. It is intended as a guide to
enable readers to integrate iButtons in their own identification systems.

The contents are as follows:

Chapter 1. iButton concept.

Chapter 2. iButton product line.
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Chapter 9. Software–interfacing iButtons.
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Appendix Background information on cyclic redundancy checks and examples of iButton applications.
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CHAPTER 1: i Button TM OVERVIEW

I. Introduction

Although human–readable labels have been used for
ages, it was the advent of computer–readable labels
that quickly revolutionized the way grocery stores oper-
ate and made possible the overnight delivery of pack-
ages. When error–prone –– and time consuming –– key
entry was replaced by bar codes, it became convenient
to build large databases to help in making accurate and
timely decisions.

In the next step in the evolution of labelling technology,
ink–on–paper bar codes are surpassed by silicon
media. With Dallas Semiconductor’s automatic identifi-
cation technology, a chip becomes the label that can
serve as a standalone data base. Attached to an object
or carried by a person, the chip identifies and carries
relevant information available instantly with little or no
human intervention. People access secure areas with
convenience, health care professionals accurately
create records, and workers efficiently track items as
they travel along the assembly line.

Three distinct limitations of bar codes are overcome by
chips:

1. They hold significantly more information.

2. Information on the chip can be changed; chips can
be updated via computer while affixed to their object.

3. Cost of access points, that is the communication
with computers, is drastically lower because of
direct, chip–to–chip digital data transfers.

II. Identification by Touch

The lowest cost method of making a chip into a comput-
er–readable label is to extend its internal connections
out to electrical contacts suitable for probing. The sim-
plest arrangement is a single data lead plus a ground
contact. In this way, a two–piece stainless steel con-
tainer called a MicroCanTM serves both as protective
housing and electrical contacts: surface (data) and rim
(ground). Its circular shape guides a simple, cup–
shaped probe over its rounded surfaces even if struck
with significant misalignment. The 16 mm button shape
serves all iButtons.

While iButtons share some of the characteristics of bar
codes, these chip–based data carriers have many
advantages over ink–on–paper technology:

– iButtons can be read without expensive electro–
optical equipment.

– iButtons can hold up to 100 times the data of bar
codes, with larger capacities in development.

– Each iButton proves its identity by its unique serial
number.

– The serial number of an iButton acts as a globally
unique node address to access the device as part
of an unlimited network.

– The contents of the chip data carriers can be
changed while attached to an object.

– iButtons can accommodate over one million
changes.

– A clam–shell, steel container called a MicroCan is
better suited to harsh operating environments.

– Hand–held equipment can be made smaller,
lighter, and less expensive since virtually no
energy is needed to read or write.

All communication with iButtons is reduced to a single
signal plus ground for a simple, self–aligning contact.
Long and short pulses encode the binary 1’s and 0’s.
Because iButtons are digital circuits, they talk directly to
other chips in a computer, resulting in minimal cost inter-
face using one CMOS/TTL logic signal. A reader/writer
for iButtons can be implemented with just one spare I/O
line of a microcomputer, often a free resource in a
system.

III. Alternate Identification Technologies

iButtons expand on existing Auto ID technologies. This
section discusses some of the limitations of existing
technologies and how iButtons overcome them.

A. Bar Codes
Bar code systems require electromechanical printers
and complicated electro–optical readers that must cope
with marginal signals as they occur with changing scan-
ning speed, varying scanning angle, poor contrast or
dirt. Sunlight impairs the readability of the bar code due
to high ambient light. After the reflected light is con-
verted to an electrical signal, the symbology must be
decoded to obtain the desired character code.

By contrast, iButtons need no optics or decoding since
the information can be stored as ASCII characters. It
can deliver the ASCII characters directly, at a rate of
2,000 characters per second (16.3 kbps).  This open
information structure allows system integration which is
both hardware and software independent.  Further-
more, the “scanner”, “printer”, unique reference number
and the computer interface are built into the chip.



081297 3/151

3

B. Magnetic Stripes
Another method of identification is magnetic stripes on
plastic carriers (e.g., credit cards) or paper ticket stock.
Like bar codes, this method must overcome analog sig-
nals. Further, data can be altered easily with just a small
magnet. Strong magnetic fields common to many envi-
ronments can inadvertently erase data. Magnetic
stripes are also sensitive to dirt that will scratch the read-
ing coil of the card reader and damage the tape itself.
Since the data density of magnetic stripes is signifi-
cantly higher than that of bar codes, the readers need
precise mechanics for correct alignment and smooth
and continuous movement of the card. Magnetic stripes
are unsuitable for labeling; they have to be removed
from the object not only for writing but also for reading.

iButtons, by contrast, are self–centering. No alignment
is required; a simple touch is all that is required to
access digital information.

C. Chip Cards
Chip cards are credit card–size, multi–layer plastic
cards that contain a complete microcontroller or
memory and an 8–contact, gold–plated probe area for
connection with the host computer and power supply.
They are not designed for high resistance intermittent
contacts. Since chip cards have eight contacts versus
iButton’s two, they are sensitive to alignment and the
sequence in which contacts are made. For economic
reasons, the contacts carry only a thin soft gold plating
which may easily wear off, exposing the copper layer.
Exposed copper forms a hard oxide which decreases
the contact quality and leads to card malfunction.
Another problem with cards is mechanical bending. The
plastic material itself is flexible but the chip inside is as
hard as glass. The chip can crack or the thin gold wires
connected to the chip can rip off. Chip cards are also
unsuitable for labeling, since they have to be removed
from the object for both reading or writing. The whole
system functions only if the card is inserted in the right
way (four possibilities) and all eight contacts are made.
Due to the limited lifetime of the contacts and the multi–
layer structure, chip cards are throw–away products at
prices that are not throw–away.

iButtons, on the other hand, are designed for poor, inter-
mittent contacts and withstand large mechanical
stresses. They need only two contacts, which are insen-
sitive to angular orientation. By design it is not possible
to probe iButtons incorrectly.

D. RF Tags 
Although RF Tags are very convenient, they have some
inherent problems. Depending on the desired range of
reception, the energy consumption may be quite high.
Wide variations in the minimum and maximum range
make zoning difficult. RF Tags are prone to interference
from intentional transmitters (radio stations) and
unintentional transmitters (electronic equipment,
engines, neon lamps, etc.). More serious problems are
the availability of frequencies for the receive and trans-
mit channels and the approval of national authorities.
Every country has its own rules and frequencies, which
prevents a common standard for world–wide use.
Another issue – usually neglected – is the influence of
electromagnetic fields on human bodies.

iButtons do not need radio frequencies, since data is
transferred by electrical conductivity during the momen-
tary contact. This allows their use without any license in
every country. The metal package shields iButtons
against electromagnetic fields and allows trouble–free
operation even under intense electro–magnetic fields.
Multiple iButtons sharing the same conductive surface
can be individually read or written by the same contact.
The specificity of the contact makes zoning precise and
the digital communication gives contact ranges up to
300 meters.

IV. Basics of iButton Operation

A. Technology
An iButton is a chip housed in a stainless steel enclo-
sure. To keep the cost of access low, the electrical inter-
face is reduced to an absolute minimum, i.e., one data
line plus ground. The energy needed for communication
is “stolen” from the data line (“parasitic power”) .

Figure 1–1 gives a general overview of an iButton. The
chip inside is produced using CMOS technology and
consumes only leakage current when in an idle state. To
keep energy consumption as low as possible during
active times, and to be compatible with existing logic
families, an iButton’s data line is designed as an open
drain output (see Figure 1–2). The current source from
the data line to ground returns the data line to ground if
the iButton is removed from the probe. The open drain
interface makes iButtons compatible with all micropro-
cessors and standard logic systems. In a CMOS–envi-
ronment, only a nominal 5 kΩ pull–up resistor to 5V VDD
is required to get normal operating conditions on an
open–drain–type bidirectional port (see Figure 1–3). If
input and output of the processor use separate pins, the
wiring shown in Figure 1–4 will provide an appropriate
interface.
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iButton BLOCK DIAGRAM Figure 1–1
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BUS MASTER CIRCUIT SEPARATE I/O  Figure 1–4
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B. Protocol
In a simple environment as described above, an opti-
mized approach for bidirectional communication, called
the 1–Wire protocol, is used. The serial transfer is done
half–duplex (i.e., either transmit or receive) within dis-
cretely defined time slots. In every case, the microcon-
troller (as the master, using a cup–shaped probe) initi-
ates the transfer by sending a command word to the
button–shaped slave iButton. Similar to electric plugs,
where the male and female ends define sink and
source, in the touch environment the cup–shaped probe
defines the master and the button shape indicates the
slave.  This clean definition avoids conflicts like masters
talking to each other.

Commands and data are sent bit by bit to make bytes,
starting with the least significant bit. The synchroniza-
tion of master and slave is based on the sharp slope that
the master generates by pulling the data line low. A cer-
tain time after this slope, depending on data direction,
either the master or the slave samples the voltage on
the data line to get one bit of information. This method of
operation is called data transfer in time slots. Each time
slot is independently timed so that communication
pauses can occur between bits if necessary, without
causing errors. Figure 1–5 illustrates the general char-
acteristics of this communication.

C. Synchronization
Data transfer cannot be done before the iButton and
master are connected, i.e., before the memory touches
the data and ground line of the microcontroller. Just a
few microseconds after the connection is established

(after touching), the iButton pulses the data line low to
tell the master that it is on the line and is waiting to
receive a command. This waveform is called a pres-
ence pulse. The master can also request an iButton to
give a presence pulse by issuing a reset pulse. If the
iButton receives a reset pulse or is disconnected, it will
sense a low level on the data line and will generate a
presence pulse just after the line reaches the high level
again. A complete Reset/Presence Pulse sequence is
shown in Figure 1–6.

D. Data Transfer
After the presence pulse, the iButton expects to receive
a command. Any command is written to the iButton by
concatenating write–one and write–zero time slots to
create a complete command byte.

The data transfer in the opposite direction (reads from
iButton) uses the same timing rules to represent a 1 or a
0, respectively. Since iButtons are designed to be
slaves, they leave it to the master to define the begin-
ning of each time slot. To do this, the master simply initi-
ates a write–one time slot to read a data bit. If the iButton
has to send a 1, all it has to do is wait for the next time
slot. If it has to send a 0, the iButton will hold the data line
low for a specified time, in spite of the release by the
master. An example of a complete command sequence
starting with a presence pulse and ending with data is
shown in Figure 1–7. The activity of the master is drawn
in bold lines. Gray lines mark the response of the
iButton. Thin lines indicate that neither is active. The line
is pulled high by a resistor.
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DATA TRANSFER IN TIME SLOTS  Figure 1–5
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EXAMPLE READ ROM Figure 1–7
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V. Memory iButton Application Example

A. Introduction
The attached Memory iButtons are mini databases for
their associated object. For a minimal system, the user
needs at least one personal computer to read and write
Memory iButtons. For mobile workers, it is necessary to
read and write Memory iButtons on the go. To allow this,
many portable computers including iButton Recorder,
iButton  Editor, and Touch Transporter have been devel-
oped by independent companies. Figure 1–8 shows a
general application example including all components
and possible data paths.

B. iButton Recorder
The iButton Recorder is a pen–shaped mobile reader/
writer for Memory iButtons. It can display (optional), rub-
ber stamp, prompt the operator, read/write (designated
A and G in Figure 1–8), store and time–stamp data from
readings and dump that data either to a Transporter (D),
another iButton Recorder (K), an iButton Editor (L), or to
the system PC (H). The iButton Recorder loads its own
application software via the serial port adaptor from the
PC (H).

C. iButton Editor
iButton Recorders are especially relevant where many
Memory iButtons need predefined data updates. The
iButton Editor is a hand–held computer that provides all
the functions of the iButton Recorder and additionally
can accept data and commands via its keyboard. It can
read and write data from/to Memory iButtons (C) and
Transporters (F), exchange data with the system PC (I),
read iButton Recorders, and supply data to be read by
iButton Recorders (G).

D. Touch Transporter
For technical and economic reasons, networks cannot
be made to link every point. Therefore other data carri-
ers are needed, such as floppy disks. Like floppy disks,
Memory iButtons are general data carriers. If a higher
capacity Memory iButton is needed than is currently
produced, Memory iButtons can be ganged together to
form a larger capacity Memory iButton, referred to as a
transporter. This high–capacity Memory iButton can act

as a data dump for iButton Recorders (D) and iButton
Editors (F). The dumped data can then be read by the
system PC (E) or by an iButton Editor (F). The system
PC can also write data to a Transporter (E) to be
dumped later to an iButton Editor (F).

E. Archive Computer
This computer can hold an inventory of all objects carry-
ing iButtons. It receives new data about the objects,
their contents and location via iButton Recorders (H),
Transporters (E), iButton Editors (I) or directly (B). It can
write to Memory iButtons either via iButton Recorder
(H,A), iButton Editor (I,C) or directly (B). It also can load
new application software to iButton Recorders (H).

VI. Chapter Summary

iButtons let users convert manual information gather-
ing, data transport and identification into a completely
electronic system. Equivalent to a document number,
the unique serial number of each iButton acts as node
address within an unlimited network. The memory acts
as buffer storage, collecting information while insulated
from the network. Data is then deposited to the network
with a simple touch. In contrast to paper labels, Memory
iButtons can be read and written, making them reusable
for a virtually unlimited number of cycles. A kind of re–
writable silicon label, the Memory iButton replaces
paper documents that are difficult to attach to objects
and are prone to damage or illegibility. Data stored in
Memory iButtons is directly available as a digital signal,
which is the native language of all computers.

iButton provide a very high immunity to electro–mag-
netic fields, mechanical stress and dirt. They can be
reprogrammed with the same probe that reads them. No
additional equipment is required to keep information
up–to–date, permitting Memory iButtons to be recycled
for thousands of uses. The flexibility and the excellent
price/performance ratio of silicon auto ID technology is
based on standard mass–produced iButtons and cus-
tomer–specific software. To realize a specific applica-
tion, first a data flow chart including type and quantity of
data must be detailed.
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iButton ENVIRONMENT AND DATA FLOW CHART  Figure 1–8
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CHAPTER 2:  PRODUCT OVERVIEW

I. Common Features

A. Mechanics
The iButton MicroCan is 16.3 mm in diameter. There are
two standard thicknesses: 3.1 mm and 5.9 mm. Devices
that are powered by the master via the data line (para-
site–powered) are available in both package types. All
other devices are available in the 5.9 mm MicroCan
only. Figure 2–1 shows the mechanical outlines of both
versions. Since the lid of either MicroCan is the same,
both can use the same probe. The flange at the bottom
of the MicroCan allows for flexible mounting. Further
details of iButton mechanics are found in Chapter 3.

B. Electrical Behavior
Other features common to all iButtons are the serial
1–Wire protocol, presence detect, and communication
in discrete time slots. These electrical details are dis-
cussed in Chapter 4.

C. ROM Registration Number
A laser–programmed ROM–section, containing a
6–byte device–unique serial number, a one–byte family
code, and a CRC verification byte, is also common to all
iButtons. Details about the CRC are found in Chapter 5.

C.1. Family Code
The family code is a type–specific value that references
the device’s functionality and capacity. The lower seven
bits of the family code indicate the device type; the most
significant bit of the family code is used to flag custom-
er–specific versions. Thus 128 different standard
devices can be coded.

C.2. Serial Number
The 48–bit (6–byte) serial number can represent any
decimal number up to 2.81*1014. If 1000 billion (1.0 *

1012) devices of the same family code were produced
per year, this number range would be sufficient for 281
years.  In addition there are 128 family codes available.
If the most significant bit of the family code is set, the
device’s functionality is still the same as that of the stan-
dard device, but the serial number follows special rules.

C.3. Special Rules for Customer Codes
If the custom flag of the family code is set, a part of the
number pool is reserved to designate specific custom-
ers. That is, the 12 most significant bits of the serial
number allow 4096 different customers each to have
their own special device. The code for these 12 bits is
assigned by Dallas Semiconductor with the first cus-
tomer order. Since the ROM section is 64 bits, and 8 bits
are taken each for family code and CRC, there remain
36 bits to store customer–defined data together with
unique serial numbers. Customer–specific devices
require special registration and ordering procedures to
control access to only one customer. Customer–spe-
cific devices can be made public if officially authorized
by the originator.

Depending on their requirements, customers have four
options for using the remaining 36 ROM bits. Option A
allows the eight most significant bits of this range to be
programmed with customer–defined data, leaving 28
bits for unique serial numbers (268.4 million combina-
tions). Option B allows the 12 most significant bits to be
customer–defined, still allowing 16.8 million unique
serial numbers. With Option C, the customer can spec-
ify the 16 most significant bits; the pool of unique serial
numbers, however, diminishes to 1.05 million. Option D
allows the 20 most significant bits to be defined by the
customer, but the total number of unique serial numbers
reduces to just 65,536. A more complete description of
customer–specific devices is available on request.

 Figure 2–1
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C.4. Example of a Private–to–Public Code
Conversion
One of the components inside the DS1994 Memory
Pluse Time iButton is the DS2404, also available sepa-
rately. Depending on the application, this chip may be
connected to a microprocessor using its 3–wire inter-
face, while the 1–Wire interface operates as iButton.
One such application is the Touch Pen chip set, where
dual–porting the DS2404 is required. Dallas Semicon-
ductor has customized the chip so that it can be distin-
guished from a single–ported DS2404. In order to make
the customized chip generally available, the private–to–
public conversion has been authorized. Instead of 04H,
this customized version carries the family code 84H to
mark it as a custom part. The 12 most significant bits of
the serial number are coded 001H to indicate dual–port
operation. Using Option A, the customer field is pro-
grammed 00H, leaving 28 bits for serialization. This chip
is available as part number DS2404S–C01 (SOIC–
package).

II. Devices

A. MicroCans
The sections below explain the different versions of
iButton MicroCans. Table 2–1 gives a complete over-
view of the product family.

A.1. DS1990A Serial Number iButton
The simplest iButton is the DS1990A, a factory–pro-
grammed ROM. Since the information is stored in laser–
cut polysilicon links (not as charge on gates or as states
of flip–flops), the DS1990A needs no energy to retain
data. Furthermore, almost no energy is required for
operation. The DS1990A uses the voltage of the data
line and stores a minimum of charge internally to main-
tain operation during the presence pulse and the low
time of any time slot during a read operation. Figure 2–2
shows how data is organized within the DS1990A.

The first byte to be transmitted out of the ROM is the
family code. After this, the guaranteed unique serial
number follows, least significant byte first. The last byte
is a cyclic redundancy check (CRC). The CRC is a kind

o f signature of the first 7 bytes. It allows fast checking of
the complete communication sequence. If the CRC cal-
culated by the reading master matches the CRC read
from the device, the reading was completely correct.
This is one of the reasons why iButtons don’t require
stable electrical contacts.

Because of its design and the strict control of the
manufacturing process, the DS1990A is a unique elec-
tronic identifier that is impractical to be counterfeited. It
is appropriate for applications where absolute identifica-
tion is required.

A.2. DS1991 MultiKey iButton
Like the DS1990A, the DS1991 incorporates a serial
number with family code and CRC. To this it adds a
64–byte nonvolatile scratchpad RAM, and three inde-
pendent password–secured nonvolatile RAM areas of
48 bytes each, called subkeys. For every secured RAM
area there is also a public identification field of eight
bytes. Figure 2–3 illustrates the internal organization of
the device.

The DS1991 is designed as a high security electronic
key that allows access to different applications with only
one device. In fact, each of the three keys can be
regarded as a protected application file. The ID field
contains the file name, and the secured RAM houses
the access code. Thus several persons can use the
same access code although they carry different sam-
ples of the DS1991.

The DS1991 is tamper–proof. If the wrong password is
used to read data, the device will output random num-
bers. If a new password is programmed, all data in the
sub–key data field is automatically erased. Although
direct write access is possible, the scratchpad should
be used as intermediate storage to verify data before it
is copied to its final place. This ensures that garbled
data is not accepted, even if the contact should break
during communication. Depending on the application,
the scratchpad alternatively can be used as unpro-
tected, general–purpose read/write memory.
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iButton DEVICES Table 2–1

Device Family Serial Memory Bits Protected Real Time Interval Cycle
Type

y
Code Number

y
Type NV RAM bits Clock Timer

y
Counter

DS1990A 01H yes ––– ––– ––– ––– –––

DS1991 02H yes 512, NVRAM 3 * 384 ––– ––– –––

DS1992 08H yes 1K, NVRAM ––– ––– ––– –––

DS1993 06H yes 4K, NVRAM ––– ––– ––– –––

DS1994 04H yes 4K, NVRAM ––– yes yes yes

DS1995 0AH yes 16K, NVRAM ––– ––– ––– –––

DS1996 0CH yes 64K, NVRAM ––– ––– ––– –––

DS1982 09H yes 1K, EPROM ––– ––– ––– –––

DS1985 0BH yes 16K, EPROM ––– ––– ––– –––

DS1986 0FH yes 64K, EPROM ––– ––– ––– –––

DS1920 10H yes 16, EEPROM TEMPERATURE iButton

DATA STRUCTURE DS1990A Figure 2–2

ROMCRC byte family code 01

high address MSB LSB low address

6–byte serial number

DATA STRUCTURE DS1991 Figure 2–3

ROM

page 0

page 1

page 3

CRC byte family code 02

high address MSB LSB low address

6–byte serial number

page 2

8–byte ID field

8–byte ID field

8–byte ID field

8–byte password

8–byte password

8–byte password

48–byte secure RAM

48–byte secure RAM

48–byte secure RAM

64–byte unprotected scratchpad
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A.3. DS1992 Memory iButton: 1K–Bit NV RAM
As with all iButtons, the DS1992 contains a unique serial
number. The internal 128 bytes of nonvolatile RAM are
organized as four final storage areas of 32 bytes each
and a scratchpad of 32 bytes (see Figure 2–4). The
RAM can be read starting at any byte position of any
page. Writing is only possible via the scratchpad. After
the data is verified against the original by reading the
scratchpad, the copy scratchpad command copies it to
the final position. This way of writing data guaranties
that even if the contact should break during communica-
tion with the device, garbled data will not reach the final
destination; it will stay in the scratchpad.

A.4. DS1993 Memory iButton: 4K–Bit NV RAM
The DS1993 is a larger version of the DS1992. As Fig-
ure 2–5 shows, the DS1993 has four times the storage
capacity of the DS1992. Of course, it has its own family
code within the ROM.

The DS1992 and DS1993 are each designed as identifi-
cation device and mobile data carrier in one unit. Using
a special data structure, these devices can store multi-
ple independent application files. Moreover, for secured
access, the public serial number can be used as a seed
together with a secret keyword to encrypt non–public
data files. Although encrypted data can be read, it is
impractical to duplicate since no two serial numbers are
the same.

A.5. DS1994 Memory Plus Time iButton: 4K–Bit
NV RAM
The DS1994 adds to the DS1993 a real–time clock,
interval timer and cycle counter, plus alarm features for
these counters. With the exception of the family code,
the DS1994 is completely compatible with the DS1993.
The extra registers for clock, etc. are located in another
page at the high end of the memory. Figure 2–6 shows
details.

With respect to time representation, the clock has fea-
tures different from common real time clocks on the
market. The clock in the DS1994 is a binary counter with
a resolution of 1/256 second. Minute, hour, day, month
and year are recalculated from the number of seconds
that have elapsed since an arbitrarily chosen “zero date”

(usually January 1st, 1970, 00:00:00 hours). Thus any
variance with country–dependent daylight savings rules
become a matter of application software and can be
handled as required. Furthermore, this representation
simplifies calculations of time intervals between events
and allows a simple algorithm to improve the accuracy
by calibration.

The interval timer can be used as a stopwatch to count
the time between certain events of the application envi-
ronment or as a tool to time–control a machine, since
the DS1994 includes a feature to generate interrupts. To
obtain operation statistics, the cycle counter keeps
track of how often the application equipment has been
switched on; the interval timer adds up the operation
time. This application, however, requires that the
DS1994 be mounted within the equipment. Also when
the DS1994 is used in a touch environment, it gives use-
ful information about the frequency of its use and the
average time of each touch. The RTC together with the
RTC alarm register provides a time–limited access
function. As soon as a certain time point is reached,
access to a secured building for example is denied by
the controlling computer. Alarms or interrupts can even
be indicated without using a computer.

The ability to write–protect the counters and lock the
alarm registers within the DS1994 converts the device
into an non–resettable expiration controller. All these
extra features and their related registers and control
flags are located in page 16. The access method is
exactly the same as for the RAM. Although the scratch-
pad is involved for writing, the command structure
allows writing single or multiple bytes.

A.6. DS1995 Memory iButton: 16K–Bit NV RAM
For applications that require storing several files of dif-
ferent size, the capacity of the DS1993 may be insuffi-
cient. The DS1995 quadruples the available storage
capacity of earlier Memory iButtons to 16K bits or 64
pages of 32 bytes. (See Figure 2–7.) Since the DS1995
has the same logical structure and understands the
same set of commands as other NV RAM iButtons, it is
completely compatible with existing application soft-
ware. The unique family code indicates the extended
capacity.
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DATA STRUCTURE DS1992 Figure 2–4

32–byte intermediate storage scratchpad

ROM

page 0

page 1

page 3

32–byte final storage NV RAM

32–byte final storage NV RAM

32–byte final storage NV RAM

CRC byte family code 08

high address MSB LSB low address

6–byte serial number

page 232–byte final storage NV RAM

DATA STRUCTURE DS1993 Figure 2–5

32–byte intermediate storage scratchpad

ROM

page 0

page 1

page 15

32–byte final storage NV RAM

32–byte final storage NV RAM

32–byte final storage NV RAM

CRC byte family code 06

high address MSB LSB low address

6–byte serial number
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DATA STRUCTURE DS1994 Figure 2–6

32–byte intermediate storage scratchpad

ROM

page 0

page 1

page 15

32–byte final storage NV RAM

32–byte final storage NV RAM

32–byte final storage NV RAM

CRC byte family code 04

high address MSB LSB low address

6–byte serial number

30–byte RTC, Timer, Counter and control page 16

DATA STRUCTURE DS1995 Figure 2–7

32–byte intermediate storage scratchpad

ROM

page 0

page 1

page 63

32–byte final storage NV RAM

32–byte final storage NV RAM

32–byte final storage NV RAM

CRC byte family code 0A

high address MSB LSB low address

6–byte serial number
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A.7. DS1996 Memory iButton: 64K–Bit NV RAM
The DS1996 quadruples the capacity of the DS1995 to
64K bits or 256 pages of 32 bytes (see Figure 2–8).
Using the same commands as other NV RAM iButtons,
the DS1996 allows easy upgrading of existing systems.
As with all iButtons, this device has a unique family
code.

Both the DS1995 and DS1996 substantially surpass the
capacity of existing mobile read/write data carriers,
such as serial memory cards or magnetic stripes. Using
the serial number as a seed together with a secret key-
word allows storage of public and encrypted data files in
the same device. Chapter 7 shows further ways to use
the large capacities of these devices.

A.8. DS1982 Add–Only iButton: 1K–Bit OTP
EPROM
The DS198x series of iButtons uses EPROM that does
not require an embedded energy source to maintain
data. Like the DS1990A, the energy for operation is
taken directly from the data line. As a standard feature,
the DS1982 contains a ROM section with a serial num-
ber and family code. The memory is organized as four
pages of 32 bytes each (see Figure 2–9).

The DS1982 is read in the same way as other Memory
iButtons; however, writing is done differently.  Before a
data byte arrives at the final memory location, it first is
written to a one–byte scratchpad. The subsequent veri-
fication involves checking the write command itself, the
destination address, and the data using an 8–bit CRC. If
the verification is positive, a pulse of 1 ms at 12V will copy
the data from the scratchpad to the memory. This proce-
dure prevents writing incorrect data even if the contact
should break during communication with the device.

A sophisticated verification is essential for EPROM
devices since once data is written incorrectly, it cannot
be changed. When data needs to be updated, the old
data is “redirected” and a new set of data is added. This
mode of operation explains the name “Add–Only
iButton” for this group of iButton products. It is not pos-
sible to erase Add–Only iButtons. Each page can be
individually hardware–protected against subsequent
write attempts. Thus every update will leave a perma-
nent audit trail.

Flags indicating whether a page of data is write–pro-
tected or redirected are stored in the eight bytes of sta-
tus memory of the device. Writing to the status memory
employs the same integrity procedures as for the data

pages. When reading data or status information, an on–
chip CRC generator protects the data stream against
potential transmission errors.

A.9. DS1985 Add–Only iButton: 16K–Bit OTP
EPROM
With 16 times the memory capacity of the DS1982, the
DS1985 is the smallest Add–Only iButton that com-
pletely supports storage and update of multiple applica-
tion files. Details on how this is accomplished are dis-
cussed in Chapter 7. The memory is organized as 64
pages of 32 bytes. Figure 2–10 shows details. In addi-
tion to the application memory, there are 88 bytes of sta-
tus memory dedicated as redirection bytes, flags and
write protect bits. A special read command is imple-
mented to signal redirection before time is wasted by
reading invalid data. The other functions of the DS1985
are exactly the same as the DS1982.

A.10. DS1986 Add–Only iButton: 64K–Bit OTP
EPROM
The DS1986 is the 64K bit upgrade of the DS1985. As
shown in Figure 2–11, the memory is organized as 256
pages of 32 bytes. The extended memory capacity
requires that the status memory be expanded to 352
bytes. All other features of the DS1986 are identical to
the DS1985.

The outstanding feature of Add–Only iButtons is the
impossibility of deleting data. If data needs to be
updated this is done by patching it with another page,
thus leaving a permanent trail of changes. It is possible
to reconstruct the original and intermediate versions of
data. Due to a hardware write–protect feature, the
devices are tamper–proof. If the write–protect bits are
programmed, there is no chance to falsify a single bit of
the corresponding page or the redirection byte.

A.11. DS1920 Temperature iButton
As the name states, this device is a memory plus ther-
mometer in a MicroCan. Instead of a memory, the user
has access to a 9–bit converter as if it were memory, giv-
ing a resolution of 0.5°C to a control register. A unique
ROM section is also standard with these devices, allow-
ing one to build a chain of thermometers and to read all
of them from one location. The accuracy of temperature
measurement is 0.5°C within the range of 0°C to +70°C.
In the ranges of –40°C to 0°C and +70°C to +85°C, the
accuracy decreases to 1°C. The temperature conver-
sion time is about one second. This device is discussed
in greater detail in Chapter 6.
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DATA STRUCTURE DS1996 Figure 2–8

32–byte intermediate storage scratchpad

ROM

page 0

page 1

page 255

32–byte final storage NV RAM

32–byte final storage NV RAM

32–byte final storage NV RAM

CRC byte family code 0C

high address MSB LSB low address

6–byte serial number

DATA STRUCTURE DS1982 Figure 2–9

32–byte final storage EPROM

32–byte final storage EPROM

32–byte final storage EPROM

32–byte final storage EPROM

page 0

page 1

page 2

page 3

1–byte scratchpad

ROMCRC byte family code 09

high address MSB LSB low address

6–byte serial number

unused write–protect bits
data memory

8 bytes
status memory

redirection bytes unused
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DATA STRUCTURE DS1985 Figure 2–10

32–byte final storage EPROM

32–byte final storage EPROM

32–byte final storage EPROM

page 0

page 1

page 63

1–byte scratchpad

ROMCRC byte family code 0B

high address MSB LSB low address

6–byte serial number

redirection bytes bit map of
used pages

write–protect bits
redirection bytes

write–protect bits 88 bytes
status memorydata memory

DATA STRUCTURE DS1986 Figure 2–11

32–byte final storage EPROM

32–byte final storage EPROM

32–byte final storage EPROM

page 0

page 1

page 255

1–byte scratchpad

ROMCRC byte family code 0F

high address MSB LSB low address

6–byte serial number

redirection bytes bit map of
used pages

write–protect bits
redirection bytes

write–protect bits
data memory

352 bytes
status memory
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B. Solder Mount Products
This section contains products that share the same
electrical and logical characteristics as iButtons, but
cannot be made available as MicroCans since they
have communication ports in addition to the 1–Wire bus.
They are normally used in the wiring of MicroLANs.

B.1. DS2407  Addressable Switch
The DS2407 (formerly referenced as DS2405A) is a
combination of two open drain transistors (”switches”)
with associated digital sensors and 1K–bit of EPROM.  It
can be employed to remotely sense the state of
mechanical switches, or together with power transis-
tors, to control a solenoid or DC motor.  Since the
DS2407 is completely in compliance with the 1–Wire
standards and also includes a unique family code and
serial number, many of these devices can be connected
in parallel to form a 1–Wire bus.  This allows, for exam-
ple, monitoring of all sensors of a burglar alarm system
with the absolute minimum of wiring, only two wires.
The DS2407 can also be used for diagnostics of digital
circuits, e.g., by sensing the logical state of a node or
forcing a node to 0 emulating a malfunction or to gate a
signal.  Only one additional wire needs to be routed
through the printed circuit board to implement this fea-
ture.  For more details, see Chapter 6.

B.2. DS2404S–C01 Dual Port Memory Plus Time
The 1–Wire MicroLAN is a general–purpose single–
master network for digital communication.  All iButtons
have a built–in MicroLAN interface as a standard fea-
ture.  Another MicroLAN device is the Addressable
Switch, mentioned above.

In order to provide universal access to the MicroLAN,
the DS2404S–C01 Dual Port RAM Plus Time has been
developed.  This device has both 1–Wire and a 3–Wire
serial microcontroller interface.  It provides 512 bytes of
memory plus a real time clock.  A special family code
distinguishes this device from other 1–Wire products.
The DS2404S–C01 can be used to make complex func-
tions involving microcontrollers behave as if they were
iButtons.  The DS2404S–C01 is discussed in more
detail in Chapter 6 of this book.

III. Commands

All iButton devices support the ROM commands to read
the family code, serial number and CRC and to search
for ROM contents. The Skip ROM and Match ROM are
not applicable with the DS1990A since there is no other
memory accessible. Common to many devices are the
scratchpad commands Read, Write and Copy. Also
widely used is the Read Memory command. Because of
its very special application, the DS1991 also requires a
command to write passwords.

For applications where a stable contact is available, the
DS1991 supports a Write Memory command. Table 2–2
summarizes iButton commands. The Skip ROM com-
mand allows getting to the data faster if the registration
number is not of interest.

Although some devices share the same commands, it
does not necessarily mean that the binary command
word is the same. This holds for the DS1991 because of
its special application areas. The DS1992 to DS1996
have the same command words. Due to their different
memory technology, the DS1982 to DS1986 require a
special set of commands. Although they use the same
command codes as the NV RAM devices, the effects of
the commands will be different. For compatibility rea-
sons, the effect of the Read Memory command is identi-
cal to the other Memory iButtons excluding the DS1991
and DS1982

IV. Chapter Summary

The iButton family has consistent operating characteris-
tics. The logical functions range from simple serial num-
ber and password–protected memory, 64K bits of non-
volatile RAM or EPROM and beyond, to a real time clock
plus 4K bits of nonvolatile RAM. Common to all of them
is an individual serial number and the 1–Wire protocol
electrical interface. If any writable memory is included,
writing is done first to a scratchpad. The size of the
scratchpad may vary: one byte (EPROM devices), 32
bytes (SRAM devices) or 64 bytes (password–pro-
tected memory). After writing, data is verified before it is
transferred to its final destination to insure data integrity.
Reading is always done directly.
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iButton COMMANDS Table 2–2

ROM Scratchpad Memory Password Status
Commands

p
Commands

y
Commands Commands Commands

Device
Type Read 

Ski
Read
W i R dType

Skip
Match

Write
Copy Read Write Write

Read
WriteMatch

Search
Copy Write

DS1990A yes ––– ––– ––– ––– –––

DS1991 yes yes yes yes yes –––

DS1992 yes yes yes ––– ––– –––

DS1993 yes yes yes ––– ––– –––

DS1994 yes yes yes ––– ––– –––

DS1995 yes yes yes ––– ––– –––

DS1996 yes yes yes ––– ––– –––

DS1982 yes ––– yes yes ––– yes

DS1985 yes ––– yes yes ––– yes

DS1986 yes ––– yes yes ––– yes

DS1920 yes yes recall ––– ––– –––
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CHAPTER 3: MECHANICAL STANDARDS

I. Introduction

iButtons identify the objects they are affixed to. Since
these objects have an abundance of different shapes
and sizes, there are many ways to mount an iButton.
This chapter provides details on MicroCans, iButton
probes and mounting techniques.

II. MicroCans

A. Package Types
An iButton is packaged in the F5 flanged MicroCan as
shown in Figure 3–1a. This package is the standard for
all devices that contain an internal energy source.
Devices that are powered by the master (parasite–pow-
ered) can be made available in this package as well as
the thinner F3 package (Figure 3–1b).

B. Stability
MicroCans are made from solid stainless steel with a
thickness of 0.254 mm. The insulating material between
the bottom part and the top contact is UV–inhibited
black polypropylene. This design gives excellent
mechanical stability and is corrosion–resistant. All
MicroCans withstand mechanical shocks of 500 g (1 g =
9.81 m/s2) in all directions. A drop from a height of 1.5 m
to a concrete floor does not damage the can or its con-
tents. The same holds for a constant force of 110 New-
ton on either side of the can. Repeated probing does not
degrade the contact since there is no plating; iButtons
will withstand a minimum of one million probing cycles.

C. Temperature Range
iButtons (DS1990A, DS1982 to DS1986) have been
specified for the extended temperature range of –40°C
to +85°C (–40°F to 185°F). The operating temperature
range of the DS1920 is even larger. Devices containing
lithium cells (DS1991 to DS1996) should not be stored
or operated below –40°C or above +70°C (–40°F or
158°F). At –55°C the electrolyte of the lithium cell
freezes; above 85°C the vapor pressure of the electro-
lyte increases, causing diffusion through the seal, which
dries out the cell after some time.

D. Human Readable Engraving
All MicroCans are laser–branded to provide all impor-
tant information about the device.  (See Figure 3–2.)
The part number is at the bottom. The extension XXX of
the part number may indicate the package type (F3 or

F5) or a customer–specific version. Customer–specific
devices can be branded 001 through FFF (hexadeci-
mal) in combination with a special family code. Indepen-
dently of this, a customer specific name can also be put
in place of the name “DALLAS”.

III. iButton Probes

iButton are read or written with a probe. The basic probe
is shown in Figure 3–3a. It is also available with tactile
feedback (Figure 3–3b). The standard probe is usually
preferred when the probe is fixed and the iButton is
mobile.

If the iButton is read by a mobile reader like the iButton
Recorder, or in general if long contact dwells are required,
the probe with tactile feedback performs better.

iButton Probes are usually mounted on panels. A retain-
ing ring pressed on from the back side provides suffi-
cient mechanical hold (see Figure 3–3c). The cross–
shaped cross section of the iButton Probe’s back end
prevents twisting the connected wires after mounting.
For some applications, a hand–held wand for iButtons is
convenient. This wand consists of a hand–grip mount
and an iButton probe with tactile feedback. Figure 3–4
shows details.

IV. iButton Mounts

A. Through–Mount
The flange at the bottom of the MicroCan makes the part
ideally suited for through–mounting. This technique can
be used to mount iButtons as personal identification
labels for access control and time stamping for account-
ing purposes. Figure 3–5 shows a practical example.
The retaining ring DS9093RA is press fit on the iButton
from the front side of the label.

The through–mount system can also be used to mount
iButtons on large containers. An iButton retainer as
shown in Figure 3–6 can easily be screwed on metal or
plastic containers. This plastic part is designed for the
F5 MicroCan. Since the bottom of the MicroCan is
pressed against the container and because of the
guarding rim of the retainer, this mounting is well suited
for harsh environments. The retainer in Figure 3–6 can
be screwed or pop–riveted. A special version of the
retainer with a pin instead of one hole allows the use of
only one screw or rivet to reduce mounting time.
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MICROCAN DIMENSIONS Figure 3–1

16.25 ± 0.15

17.35 +0
–0.15

14.55

R  0.25

R  0.66

0.50
0.40

0.35

5.89 ± 0.15

a)  F5 MicroCan

b)  F3 MicroCan

0.50

3.10 ± 0.15

0.40

0.35

14.55

R  0.25

R  0.66

16.25 ± 0.15

17.35 +0
–0.15

All dimensions are in millimeters.
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iButton ENGRAVING ON STAINLESS STEEL LID Figure 3–2

NNN – 001 through FFF for Custom Code

F3 – For F3 Package

F5 – For F5 Package

XXX:

REGISTERED

CC
RRYYWW

FF
SSSSSSSSSSSS

YYWW = YEAR, WORK WEEK
CC = CRC

SSSSSSSSSSSS = 12 DIGIT HEX SERIAL #
RR = PACKAGE REV.
FF = FAMILY CODE

ZZZZ = GENERIC PART NUMBER

iButton PROBE Figure 3–3a

GROUND CONTACT

16.5 DIA.21.0 DIA

DATA CONTACT
12.7 DIA

MOUNTING POST
9.5 DIA 18.3 DIA.

22.3

10.1

1.9 DS9092

iButton PROBE WITH TACTILE FEEDBACK Figure 3–3b

21.0 DIA 16.6 DIA.

DATA CONTACT
4.0 DIA.

10.1

22.3

40.1

2.7

MOUNTNG POST
9.5 DIA. 18.3 DIA.

DS9092T
GROUND CONTACT

All dimensions are in millimeters.



PIN 1

CONNECTOR PINOUT

DATA – PIN 4
GROUND – PIN 3

b)  Hand Grip Probe

HAND–GRIP MOUNT
DS9092GT

All dimensions are in millimeters.
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MOUNTING AN iButton PROBE Figure 3–3c

RETAINING RING

PANEL MOUNTING

HAND GRIP PROBE  Figure 3–4

DATA CONTACT

21.0 DIA.

SECTION A–A

101.6

GROUND CONTACT

A

a)  Hand Grip Probe, dimensions

DS9092GT

A

12.1 DIA

1 meter
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THROUGH–MOUNT IDENTIFICATION LABEL  Figure 3–5

RETAINING RING

FLANGE

a) b)

iButton

THROUGH–MOUNT FOR CONTAINERS Figure 3–6

DS9093P/S

A

B

5.3
3.0 MINIMUM REQUIRED
CLEARANCE

B

A

30.9

2.0

SECTION B–B

SECTION A–A

46.9 4.4

2.0

5.2 DIA.

35.0

5.0 DIA.

3.8 REF.

NOTE:  PIN IS REPLACED
WITH A THRU HOLE
ON DS9093S

a)

b)

c)

2.0

NOTE:  PIN IS REPLACED
WITH A THRU HOLE
ON DS9093S

All dimensions are in millimeters.

iButton
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PRESS FIT MOUNT Figure 3–7

min. 2.0 mm

iButton

B. Press Fit
MicroCans are very stable. For that reason, they can be
directly mounted on metal casings. To do this, first a cav-
ity must be milled into the metal. Then the iButton is
inserted and the rim of the cavity is pressed down so that
it tightly holds the MicroCan in its position. Figure 3–7
shows this technique. In order to contact iButtons with a
probe, a minimum clearance of 3.0 mm around the
iButton is required (Figure 3–6a). The protrusion of the
iButton above the surface must be at least 2.0 mm.

A similar mounting technique is used with the plastic
keyring shown in Figure 3–8. The slot in this keyring pro-
vides the elasticity to insert or withdraw flanged Micro-
Cans. Mechanical dimensions allow its use with both
the F5 and F3 MicroCan and standard iButton Probes.

C. Spring Hold
Certain applications may require mounting iButtons on
printed circuit boards. The most advanced single–piece
retainer for F5 MicroCans is the DS9098 (see Figure
3–9). Like the MicroCan, it is made from stainless steel.
Selective tin–lead plating provides optimal solderability.
By design, this retainer is compatible with standard
pick–and–place and cleaning equipment. At the first
insertion of an iButton, the inner contact breaks away
from the outer ring and acts as a spring to hold the Micro-
Can with a force of a minimum of two Newtons. The
cross section view A–A in Figure 3–9a explains how the
iButton is held and how it can be easily removed again.

Another way to mount iButtons on printed circuit boards
are MicroCan Clips. Figure 3–10 shows the standard
clip DS9094F and a surface mount version DS9094FS
to be used with the F5 MicroCan. These clips are similar
to common battery clips but prevent contact if one tries
to insert a MicroCan in the reverse direction. In contrast
to the DS9098, the DS9094F accepts the MicroCan hor-
izontally not vertically.

In principle, it is possible to mount iButtons on rotating
parts and to use sliding spring pressed contacts, as
shown in Figure 3–11, though mounting hardware for
this application is not yet available as a standard
product.

The DS9100 Touch and Hold Probe is shown in Figure
3–12.  This probe is similar to the DS9098 MicroCan
Retainer. An F5 MicroCan will fit completely into the
DS9098 retainer, but the flange and about 1/3 of the can
will stick out if pressed into the DS9100. As a probe, the
DS9100 allows reading iButtons on contact. At further
pressure the stiff springs of the DS9100’s outer ring will
hold the MicroCan sufficiently to give a good contact to
both the ground and the data lid. To increase the
strength of holding, future versions of F5 MicroCans
may have a tiny indentation at the outer rim.  This will
have no impact on probe contact or mounting tech-
niques explained in this chapter.
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SNAP–IN KEY RING Figure 3–8

B
R7.1

6.3

R8.2 3 PL.

R8.7

15.1 A

22.7 38.1

A

7.7

B

20.6

4.8

3.4

SECTION A–A

SECTION B–B

2.2

All dimensions are in millimeters.

DS9098 iButton RETAINER Figure 3–9a

Section A-A

5.90

Tin - lead
plated side B

Section B-B

A

11.4

12
.9

5

16
.6

6 
D

ia
.

4.
34

B

A 19
.9

 D
ia

.

8.0

All dimensions are in millimeters.



DS9094F

11.9

GROUND

DATA

19.1

23.4 16.7

0.97 DIA.
FINISHED HOLE
2 PL.

10.8

CONTACT
DETAIL

4.7

0.8 X 0.6

11.9

2.5

5.1

17.6

31.3

8.2  2 PL.

DATA

GROUND

29.4

3.2

2.5  2 PL.

GROUND

DATA

a)  DS9094F b)  PCB–Layout for DS9094F

c)  DS9094FS d)  PCB–Layout for DS9094FS

All dimensions are in millimeters.

e) Insertion of an i Button
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RECOMMENDED PCB LAYOUT Figure 3–9b

Opening in
solder mask

11.3
copper

14.3

18.3

4.0

Center – Data Outer ring – Ground

ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ

Copper cladding >0.3 Kg/m2

or >34 µm (>1 oz/sq. ft.)
with soldermask overlay

All dimensions are in millimeters

iButton MOUNTING CLIPS FOR PCBs  Figure 3–10



PLATED STEEL TUBE

DATAGROUND

OPTIONAL
STRANDED
STEEL CABLE

PLASTIC SLEEVE
iButton
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SPINNING WHEEL Figure 3–11

SPIN

DATA

iButton

TOUCH AND HOLD PROBE Figure 3–12

TOUCH BAR Figure 3–13
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SPLIT CONDUIT Figure 3–14

INDENTATION

RUBBER WASHER

SPRING

GALVANIZED
STEEL PIPE

DATA

GROUND

DATA

GROUND

iButton

iButton

V. Special Mounting Examples

Some applications require mechanical tolerances that
are large compared to the size of an iButton. In such
cases, the surface of the iButton can be extended to
obtain the required tolerances. One way to do this is to
build a Touch Bar with the iButton inside (Figure 3–13).
Another possibility is to cut the handling rod of a con-
tainer, put the iButton into the middle, and mount the rod
again keeping one part electrically insulated from the
other (Figure 3–14).

VI. Summary

iButtons are electronic chips housed in a stainless steel
package. Special probes, clips and retainers are avail-
able for reading and writing iButtons. iButtons can be
mounted on objects using either special retainers, metal
forming techniques or adhesives. Further, the Micro-
Can’s surface can be extended for applications that
require larger contact surfaces.
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MULTI–PURPOSE CLIP DS9101 Figure 3–15

RETAINER

LIFTER

STRAP FEED
THRU’s

RIVET HOLE

WIRE FEED THRU

ENTRY GUIDE

iButton
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CHAPTER 4:  ELECTRICAL STANDARDS
AND CHARACTERISTICS

I. 1–Wire Interface – Timing

A. Introduction
iButtons are self–timed silicon devices that require elec-
trical contact for operation. The timing logic provides a
means of measuring and generating digital pulses of
various widths. Data transfers are bit–asynchronous
and half–duplex. Data can be interpreted as commands
(according to the prearranged format identified by the
family code) that are compared to information already
stored in the iButton to make a decision, or can simply
be stored in the iButton for later retrieval. Because the
falling slope is the lease sensitive to capacitive loading
in an open drain environment, iButtons use this edge to
synchronize their internal timing circuitry. iButtons are
considered slaves, while the host reader/writer is con-
sidered a master.

B. Write Time Slots
Timing relations in iButtons are defined with respect to
time slots. To provide maximum margin for all types of
tolerances, iButtons sample the status of the data line in
the middle of a time slot. By definition the active part of a
1–Wire time slot (tSLOT) is 60 µs. Under nominal condi-
tions, an iButton will sample the line 30 µs after the fal-
ling edge of the start condition.

The internal time base of an iButton may deviate from its
nominal value. The allowed tolerance band ranges from

15 µs to 60 µs. This means that the actual slave sam-
pling may occur anywhere between 15 and 60 µs after
the start condition, which is a ratio of 1 to 4. During this
time frame the voltage on the data line must stay below
VILMAX or above VIHMIN.  This explains the basic form of
the write–1 and the write–0 time slots (Figures 4–1 and
4–2) as they are needed to write commands or data to
iButtons. The duration of a low pulse to write a 1 (tLOW1)
must be shorter than 15 µs; to write a 0 the duration of
the low pulse (tLOW0) must be at least 60 µs to cope with
worst–case conditions.

The duration of the active part of a time slot can be
extended beyond 60 µs. The maximum extension is lim-
ited by the fact that a low pulse of a duration of at least
eight active time slots (480 µs) is defined as a Reset
Pulse. Allowing the same worst–case tolerance ratio, a
low pulse of 120 µs might be sufficient for a reset. This
limits the extension of the active part of a time slot to a
maximum of 120 µs to prevent misinterpretation with
reset.

At the end of the active part of each time slot, an iButton
needs a recovery time tREC of a minimum of 1 µs to pre-
pare for the next bit. This recovery time may be
regarded as the inactive part of a time slot, since it must
be added to the duration of the active part to obtain the
time it takes to transfer one bit. The wide tolerance of the
time slots and the non–critical recovery time allow even
slow microprocessors to meet the timing requirements
for 1–Wire communication easily.

WRITE–ONE TIME SLOT Figure 4–1

60 µs

tREC

tLOW1

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

15 µs

SAMPLING WINDOW

tSLOT

RESISTOR

MASTER

Regular Speed

60 µs < tSLOT < 120 µs

1 µs < tLOW1 < 15 µs

1 µs < tREC < �

Overdrive Speed

6 µs < tSLOT < 16 µs

1 µs < tLOW1 < 2 µs

1 µs < tREC < �

iButton

iButton
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WRITE–ZERO TIME SLOT Figure 4–2

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

RESISTOR

MASTER

tSLOT

tREC

tLOW0

SAMPLING WINDOW

60 µs

15 µs

Regular Speed

60 µs < tLOW0 < tSLOT < 120 µs

1 µs < tREC < �

Overdrive Speed

6 µs < tLOW0 < tSLOT < 16 µs

1 µs < tREC < �

iButton

iButton

C. Read Time Slots
Commands and data are sent to iButtons by combining
Write–Zero and Write–One time slots.  To read data, the
master has to generate Read–Data time slots to define
the start condition of each bit.  The Read–Data time slot
looks essentially the same as the Write–One time slot
from the master’s point of view.  Starting at the high–to–
low transition, the iButton sends one bit of its addressed
contents.  If the data bit is a 1, the iButton leaves the
pulse unchanged.  If the data bit is a 0, the iButton will
pull the data line low for tRDV or 15 µs (see Figure 4–3).
In this time frame data is valid for reading by the master.

The duration tLOWR of the low pulse sent by the master
should be a minimum of 1 µs with a maximum value as
short as possible to maximize the master sampling win-
dow.  In order to compensate for the cable capacitance
of the 1–Wire line the master should sample as close to
15 µs after the synchronization edge as possible.  Fol-
lowing tRDV there is an additional time interval,
tRELEASE, after which the iButton releases the 1–Wire
line so that its voltage can return to VPULLUP.  The dura-
tion of tRELEASE may vary from 0 to 45 µs; its nominal
value is 15 µs.

READ–DATA TIME SLOT Figure 4–3

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

tSLOT tREC

tRDV

tLOWR

Regular Speed

60 µs < tSLOT < 120 µs

1 µs < tLOWR < 15 µs

0 < tRELEASE < 45 µs

1 µs < tREC < �

tRDV = 15 µs

tRELEASE

MASTER SAMPLING
WINDOW

RESISTOR

MASTER

Overdrive Speed

6 µs < tSLOT < 16 µs

1 µs < tLOWR < 2 µs

0 < tRELEASE < 4 µs

1 µs < tREC < �

tRDV = 2 µs

iButton
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D. Presence Detect
As mentioned above, 1–Wire timing also supports a
Reset Pulse. This pulse is defined as a single low pulse
of minimum duration of eight time slots or 480 µs fol-
lowed by a Reset–high time tRSTH of another 480 µs
(see Figure 4–4 ). This high time is needed for the
iButton to assert its Presence Pulse. During tRSTH, no
other communication on the 1–Wire line is allowed. The
Reset Pulse is intended to provide a clear starting condi-
tion that supersedes any time slot synchronization. In an
environment with uncertain contacts it is essential to
have a means to start again if the contact is broken. If the
master sends a Reset Pulse, the iButton will wait for the
time tPDH and then generate a Presence Pulse of the
duration tPDL. This allows the master to easily deter-
mine whether an iButton is on the line. Moreover, if sev-
eral iButtons are connected in parallel (see Chapter 5,
“Logical Standards and Characteristics”), the master
can measure both times and thus gain knowledge about
the actual worst–case timing tolerance of all devices on
the line.

The nominal values are 30 µs for tPDH and 120 µs for
tPDL. With the same worst–case tolerance band, the
measured tPDH value indicates the internal time base of
the fastest device. The sum of the measured tPDH and
tPDL values is five times the internal time base of the
slowest device. If there is only one device on the line,
both values will deviate in the same direction. This cor-
relation can be used to build an adaptive system. Spe-
cial care must be taken to recalibrate timing after every
reset since the individual timing characteristics of the
devices vary with temperature and load.

The accuracy of the time measurements required for
adaptive timing is limited by the characteristics of the
master’s input logic, the time constant of the 1–Wire line
(pullup resistor x cable capacitance) and the applied
sampling rate.  If the observed rise time or fall time
exceeds 1 µs or the highest possible sampling rate is
less than 1 MHz, adaptive timing should not be
attempted.

If an iButton is disconnected from the probe, it will pull its
data line low via an internal current source of 5 µA. This
simulates a Reset Pulse of unlimited duration. As soon
as the iButton detects a high level on the data line, it will
generate a Presence Pulse. This feature can be used to
automatically power up the iButton Recorder, for exam-
ple, to save energy between reads or writes. It is also
useful to trigger a serial port hardware interrupt when
using a PC and COM port adaptor.

iButtons are designed to operate with poor electrical
connections. A certain contact dwell (minimum time of
contact), however, is required to transfer commands
and a packet of data. This time depends on the opera-
tion that has to be performed. As will be explained in
Chapter 5, a ROM command and memory command
form a command entity. A ROM command can be sent
independently; a memory command must be preceded
by a ROM command. Before an iButton can accept a
ROM command, it needs to perform a Reset and Pres-
ence Detect cycle for a total of 16 time slots or a mini-
mum of 0.96 ms. This time must be added to the results
of the examples following.

RESET AND PRESENCE PULSE Figure 4–4
tRSTH

tRSTL
tR

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

Regular Speed

480 µs < tRSTL < � *

480 µs < tRSTH < � (includes recovery time)

15 µs < tPDH < 60 µs

60 µs < tPDL <  240 µs

tPDH

tPDL

RESISTOR

MASTER

Overdrive Speed

48 µs < tRSTL < 80 µs

48 µs < tRSTH < � 

2 µs < tPDH < 6 µs

8 µs < tPDL <  24 µs
iButton

* In order not to mask interrupt signalling by other devices on the 1–Wire bus, tRSTL + tR should always be less than 
  960 µs.
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E. Examples
The minimum amount of time required to read the
ROM–data is 8 + 64 complete time slots or 72 x 61 µs,
which is 4.4 ms. Since data is written to Memory
iButtons using the scratchpad, the minimum duration to
transfer one 32–byte page of data is (8 + 8 + 16 + 256) x
61 µs or 17.6 ms. To read back the scratchpad for verifi-
cation exceeds the writing time by eight time slots since
a read–only status byte is transmitted in addition to base
address and data. To write the complete scratchpad of
the DS1991 takes about twice as long since it has a
capacity of 64 bytes. Of course, it is possible to write
less data than one complete scratchpad, but each new
transfer requires another reset cycle, slowing down the
effective data rate. If a sliding contact or another forced
intermittence limits the duration of the contact time, the
number of pages that can be read in a continuous
sequence may be affected. In the worst case, where a
certain device must be addressed, the total sequence to
read one page takes (8 + 64 + 8 + 16 + 256) x 61 µs or
21.5 ms. If there is only one device on the data line, 17.6
ms is sufficient. These values are important to remem-
ber since the file structure to be used with Memory
iButtons is based on reading and writing entire pages.
The iButton file structure is discussed in Chapter 7.

F. Overdrive
As will be explained in Chapter 5, it is possible to put an
iButton into an idle state from which it will no longer
respond to anything on the 1–Wire bus until it sees a
Reset pulse. With this feature, high–speed communica-
tion capability can coexist on the same 1–Wire bus with-
out interfering with the existing protocol, provided that
the 1–Wire bus never goes low for more than 120 µs.

The actual implementation of overdrive speeds up the
internal time base of an iButton by the factor of 10.  This
applies to all communication waveforms including the
Reset and Presence Pulse, but excluding programming
pulses for EPROM devices.  See Figures 4–1 to 4–4 for
details.  All iButtons capable of overdrive communica-
tion will communicate at regular speed if not explicitly
set into overdrive mode.  Overdrive–capable devices
are identified by their family code or detected by using
special command codes that are not understood by
other devices.  More details on the protocol are found in
Chapter 5.

II. 1–Wire Interface – Electrical

A. Parasite Power
AC timing values in digital systems usually refer to volt-
ages that represent maximum low and minimum high
levels of the logic family. One–wire timing differs slightly
from this well–known scheme due to the parasite power
system that supplies the ROM and front–end logic of
most iButtons. The DS1991 does not use a parasitic
power supply since the device is of no use as a pro-
tected memory if the internal energy source is
exhausted. The DS1990A, all Add–Only iButtons
DS198x and the DS1920 Temperature iButton are
designed for parasite power only. The ROM–logic of the
DS1992 to DS1996 feeds either from the internal lithium
voltage of 3V or from the 1–Wire voltage, whichever is
higher. This feature allows access to the lasered ROM
section of the DS1992 to DS1996 even if the lithium cell
is exhausted after 10 years or more.

Parasite power systems need a capacitor to store
energy and diodes to prevent unwanted discharge from
the supply line. This is exactly the scheme of a half–
wave rectifier. After the capacitor is charged to the nor-
mal operating level, there will be only some ripple volt-
age caused by recharging pulses restoring charge lost
during 1–Wire low times. The size of an iButton’s stor-
age capacitor is about 800 pF. This capacity is seen for a
short time when an iButton is contacted by a probe. After
the capacitor is charged, only a very small fraction of this
capacity is recognizable, according to the charge
required to refill to full charge. The total time constant to
charge the capacitor is defined by the capacitor itself,
the internal resistances of about 1 kΩ, the resistance of
the cable and contacts, the cable capacitance, and the
resistor pulling up the data line. Adding the voltage drop
of the diode and the minimum internal operating voltage
of the chip gives the minimum required pull–up voltage
Vpull–up on the 1–Wire bus. Table 4–1 shows the
details, valid for all iButton products. The minimum
pull–up voltage is important to define the recovery time
tREC and the reset high time tRSTH. All other timing is
based on the minimum high and maximum low logic lev-
els (see Figures 4–1 to 4–4).
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GENERIC ELECTRICAL SPECIFICATION OF i Buttons Table 4–1

Value DS1990A – DS1996 DS1982–DS1986 DS1920

Vpull–up min 2.8V

VIH min 2.2V

VIL max 0.8V

VOL max 0.4V at 4 mA1

tSLOT min 60 µs

tSLOT max 120 µs

tRDV 15 µs

Special Power Supply None VPP Programming Pulse 1 mA at 5V

NOTES:
1. Also see Figure 4–5 for worst case IOL min at 50°C for DS1990A, DS1982, DS1991, and DS1992/3/4.

Due to their EPROM technology, Add–Only iButtons
require pulses of a certain duration, voltage and current
for programming.  For the DS1982 the following values
apply:  pulse duration 500 µs minimum, voltage 11.5V
nominal, peak current 10 mA maximum. To prevent
damage to other iButtons on the MicroLAN, only
DS198x type devices should be present during pro-
gramming. The DS1920 Temperature iButton requires a
strong active pull–up to 5V during temperature conver-
sion and writing to the internal memory cells. This is not
critical to other devices on the bus since iButtons will not
start any communication by themselves.  Even inter-
rupts of DS1994 cannot occur in this situation since they
are automatically disabled (see Chapter 6).

B. Pull–Up Resistor
The recommended pull–up resistor for the 1–Wire line is
5 kΩ for a short–length, single–contact probe. This
value is chosen to allow tolerance for highly resistive
contacts and to provide good logic levels at both ends of
a short cable. Usually the reading circuitry of the master
will accept a voltage of up to 0.8V as logic 0. Since the
loading from the cable between master and iButton
influences the time constant of the 1–Wire bus, it may be
necessary to use pull–up resistors below 5 kΩ. Figure
4–5 shows the minimum sink current iButtons can sup-
ply to discharge the line at 50°C and the resulting output
voltage. At lower temperatures, iButtons are able to sink
even higher currents at lower voltage drops than shown
in these graphs.

C. Margin Optimization
The ideal connection between an iButton and a com-
puter is a short cable with low capacitance. As long as a

iButton Recorder, iButton Editor or a host computer with
a short cable are used, these requirements are fulfilled.
The longer the lines, the more care must be taken about
the DC and especially AC behavior. The recovery time
and the conditions where a 1 is read or written become
critical points. Recovery time (tREC) becomes critical
when two consecutive write–zero time slots are
required for communication. If the data transfer is occur-
ring at the maximum possible rate, a minimum tREC
pulse of 1 µs must be created between two 60 µs write–
zero low times. The ability to propagate this small pulse
down a long length of cable without severe degradation
becomes increasingly difficult as lengths increase.
Eventually the pulse is filtered completely and the driver
becomes unable to communicate with the iButton at the
end of the long cable. It may be possible to improve
transmission distance by simply increasing the tREC
value. For example, if tREC was increased from 1 µs to
15 µs, the maximum data rate would decrease from
16.3Kbits/s to 13.3Kbits/s, but the 15 µs tREC pulse
might allow operation to occur over much greater dis-
tances since there may be a sufficient recovery level
presented to the iButton even with the filtering effect of
the long cable because of the increased width of the
recovery pulse. The write 1 condition can be improved
by reducing the time tLOW1 of the write 1 time slot but not
going below the minimum value. This also helps to
increase the margin of the read 1 condition. As the cable
becomes long, it will be necessary to reduce the pull–up
resistor.
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iButton OUTPUT VOLTAGE VS. OUTPUT CURRENT Figure 4–5
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Tests have shown that pull–up resistors down to 1.0 kΩ
allow operation over the maximum cable length. If the
resistor is less than 1 kΩ, logic levels are degraded, and
with higher values capacitive loading prevents the
proper waveforms. Lower resistor values increase the
sensitivity with respect to contact resistance. To maxi-
mize cable length, it is recommended to use low–capac-
itance cables, with a specific capacitance of about 15
pF/meter, and the largest resistor consistent with good
operating margins.

Tests have also shown that twisted–pair cable gives
better results than two wires in parallel. The simple
pull–up resistor at the master has proven superior to
strong pulsed active pull–up circuits since it matches
the cable impedance better. For the same reason, it can
be advantageous to limit the falling slope by introducing
a driver with a soft turn–on at the master. Under extreme
conditions, it may be necessary to add a comparator at
the receive input of the master to optimize the voltage
threshold for reading logic 1’s and logic 0’s on long lines.

As tests have proven, correct operation of iButtons can
be achieved on lines up to 300 meters using common

twisted–pair telephone cable. The pull–up resistor was
reduced to 1.0 kΩ; 30 iButtons of any type were con-
nected in parallel at the end of the cable. The 1–Wire
bus was controlled by a port 0 pin of a DS5000 (Intel
8051 compatible) microcontroller. The COM port adap-
tor for PCs operates for distances up to 200 meters on
most PCs. Further details are available in Dallas Semi-
conductor Application Note 55, “Extending the Contact
Range of iButtons.”

III. Summary
Communication with iButtons is done in time slots of
nominal 60 µs duration. Each time slot transfers 1 bit. An
extra long low pulse acts as a reset. In response to a
reset, iButtons generate a Presence Pulse. To read one
page of data (32 bytes), the contact dwell must be about
20 ms. Choosing low–capacitance, twisted–pair cable
and a 1 kΩ pull–up resistor, iButtons can be operated
over lines exceeding lengths of 200 meters. In order to
create the maximum reading window, the master should
sample the 1–Wire bus as close as possible to 15 µs
after the synchronization edge. Increasing tREC time to
15 µs will improve the recovery pulse received by the
iButton.
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CHAPTER 5:  LOGICAL STANDARDS AND
CHARACTERISTICS

I. Overview

A. Protocol Architectural Model
The software or firmware that manages data transfer to
and from iButtons can be related to the International
Standards Organization (ISO) reference model of Open
System Interconnection (OSI), which specifies a lay-
ered protocol having up to seven layers, denoted as
Physical, Link, Network, Transport, Session, Presenta-
tion, and Application. According to this model, the elec-
trical and timing requirements of iButtons and the char-
acteristics of the 1–Wire bus comprise the Physical
layer. The software functions TouchReset, TouchByte,
and TouchBit correspond in this model with the Link
layer, and the multidrop access system functions First,
Next, Access, etc., that support selection of individual
network nodes correspond with the Network layer. The
software that transfers memory data other than ROM
contents to and from the individual network nodes corre-
sponds to the Transport layer. A Session layer may or
may not be needed, depending on the environment in
which the iButtons are used. The Presentation layer
provides a file structure that allows Memory iButton data
to be organized into independent files and randomly
accessed (as with a diskette). The Application layer rep-
resents the final application designed by the customer.
Each of the software layers relies on certain intrinsic
commands within the iButton to accomplish its specific
functions. In the following discussion of the operation of
iButtons, the intrinsic commands that support the opera-
tion of a given software layer are described as belonging
to that layer. Figure 5–1 shows the hierarchy of these lay-
ers. The following description follows the hierarchy of
these protocol layers.

A.1. Physical Layer
This layer defines the electrical characteristics, logical
voltage levels and general timing of iButton communica-
tion. Details are discussed in Chapter 4, “Electrical
Standards and Characteristics.” How the Physical layer
influences the electrical interface to computers and
microcontrollers is detailed in Chapter 8, “Systems
Integration Hardware.”

A.2. Link Layer
This layer defines the basic communication functions of
iButtons. It provides the basic functions of Reset, Pres-
ence Detect and bit transfer. Details about the iButton
hardware are presented in Chapter 4. The software
issues are discussed in Chapter 9, “Systems Integration
Software.” After issuing the Presence Pulse, iButton
communication enters the Network layer.

A.3. Network Layer
This layer provides the identification of iButtons and the
associated network capabilities. Each iButton has its
own unique identification number that is lasered into a
ROM section of the chip during the manufacturing pro-
cess. Because of the ROM, all commands referring to
the Network layer are also called ROM commands.

With the exception of the DS1990A, all iButtons support
all commands of the Network layer. The DS1990A only
supports Read ROM and Search ROM. The commands
Skip ROM and Match ROM are not applicable since
there is no other memory to access. However, if applied
to the DS1990A, these commands will not cause any
further activities on the 1–Wire bus. Software for the
Network layer is discussed in Chapter 9. The following
overview lists the commands, the command codes and
some application details.

1–WIRE NETWORKING PROTOCOL LAYERED ARCHITECTURE  Figure 5–1

PRESENTATION

TRANSPORT

NETWORK

LINK

PHYSICAL
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READ ROM code 33H – to identify a device.
– to determine if several devices are connected in parallel.

code 0FH – the DS1990A accepts this code as an alternative to 33H.
SKIP ROM code CCH – to omit addressing if only one device can be connected.

– to broadcast data to all devices on the bus, e.g., to format many
devices or to copy the contents of one device to many others. This
application usually requires all iButtons to be of the same type and to
be connected properly.

MATCH ROM code 55H – to address one specific iButton among several connected to the
1–Wire bus. If only one iButton can be connected, the Skip ROM com-
mand can be used instead.

SEARCH ROM code F0H – to get the registration numbers (= addresses) of all iButtons con-
nected to the 1–Wire bus.

– to get the serial number of one device and to simultaneously address
it.

OVERDRIVE SKIP ROM code 3CH – to set all overdrive–capable devices into overdrive mode and to sub-
sequently broadcast data at overdrive speed.

OVERDRIVE MATCH ROM code 69H – to address one specific iButton among several connected to the
1–Wire bus and set it into overdrive mode for subsequent commu-
nication at overdrive speed.

For reading the ROM the Search ROM command
should be preferred over Read ROM.  Search ROM is
automatically compatible with the multidrop environ-
ment.  After having read the ROM this way, the CRC can
still be checked before communication is continued.

How to use the Search ROM command is detailed in
subsection “Networking Capabilities” later in this chap-
ter. After sending any ROM command and providing the
required data or read time slots, one gets to the Trans-
port layer. If this is not desired, a Reset Cycle returns to
the Network layer.

A.4. Transport Layer
This layer is responsible for the data transfer between
the non–ROM segments of the iButton and the master,
and the data transfer from the scratchpad to the final
storage areas and special registers of the Memory
iButton.

Since the DS1990A contains no further memory, it can-
not support the Transport layer. The DS1920 Tempera-
ture iButton is not a typical memory device and therefore
differs on the Transport layer. All NV RAM–based iBut-
tons support the memory commands Read Memory
(called Read Subkey with the DS1991), Write Scratch-
pad, Read Scratchpad, and Copy Scratchpad. Because
of its very special application area, the DS1991 also
supports the commands Write Subkey and Write Pass-
word. The DS1991 uses different command words,
addressing modes and page sizes than other Memory
iButtons. For this reason it is not compatible on this
layer. Due to their special technology, Add–Only iBut-
tons require different command structures on the Trans-
port layer. However, compatibility for the Read Memory
command is provided. The following overview lists all
the commands of iButtons, command codes, and
application hints. For DS1920 and DS2407, refer to
Chapter 6.  The CRC16 is described in section II.A.3 of
this chapter.

READ MEMORY code F0H – to read one or several consecutive bytes of one or consecutive pages
starting at any valid address.

EXTENDED READ code A5H – EPROM devices only: to read the redirection byte followed by an
MEMORY inverted CRC16, then read consecutive data bytes starting at any

valid data address and obtain an inverted CRC16 of the previous data
bytes at the end of the page; continued reading delivers the same
sequence of information for the next pages (not available with
DS1982).
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READ SUBKEY code 66H – DS1991 only: to read one or several consecutive bytes of one pass-
word–protected page starting at any address from 10H to 3FH.

WRITE SCRATCHPAD code 0FH – NV RAM devices only: to supply the destination address and to write 1
to 32 consecutive bytes of data to the scratchpad.

code 96H – DS1991 only: to write one or several consecutive bytes to the scratch-
pad starting at any address from 0 to 3FH.

READ SCRATCHPAD code AAH – NV RAM devices only: to verify the destination address and the data
previously written to the scratchpad. Three bits of a status byte read
after the destination address indicate if scratchpad overflow or an
incomplete byte occurred and if data has already been copied to
memory.

code 69H – DS1991 only: to read one or several consecutive bytes of the scratch-
pad starting at any address from 0 to 3FH.

COPY SCRATCHPAD code 55H – NV RAM devices only: to copy data stored in the scratchpad to the
destination address. This command requires that the scratchpad be
read before getting the 3–byte authorization code that must be sup-
plied with the copy scratchpad command.

code 3CH – DS1991 only: to copy either the entire scratchpad data or one speci-
fied 8–byte segment of the scratchpad to one password–protected
page; the copied area of the scratchpad is automatically erased after
the transaction is finished. This command requires the password of
the destination page.

WRITE SUBKEY code 99H – DS1991 only: to write one or several consecutive bytes to one pass-
word–protected page starting at any address from 10H to 3FH.
WARNING: if the iButton is removed from the probe too early, the
secured data may be garbled. It is highly recommended to write data
to the scratchpad, verify it, and then copy it to the password–protected
page.

WRITE PASSWORD code 5AH – DS1991 only: to initialize the identifier and the password of a pass-
word– protected page. This command automatically erases the entire
protected page. For subsequent changes of password or identifier,
the new values should be written to the scratchpad, verified, and then
copied to the final destination.

WRITE MEMORY code 0FH – EPROM devices only: to transfer, verify and program one or several
consecutive bytes starting at any valid address within the data
memory section.

WRITE STATUS code 55H – EPROM devices only: to transfer, verify and program one or several
consecutive bytes starting at any valid address within the status
memory section.

READ STATUS code AAH – EPROM devices only: to read one or several consecutive bytes start-
ing at any valid address within the status memory section and to
obtain an inverted CRC16 at the end of each page (different imple-
mentation with DS1982, see Chapter 6).

After these commands have been sent and executed,
one must return to the Link layer to issue a new Reset
Pulse. Additional readings after the end of data yield 1’s.
Extended writing is ignored. If applicable, the overflow
bit is set.

A.5. Presentation Layer
The layers Link, Network, and Transport are the founda-
tions of the Presentation layer. This layer provides a

DOS–like file system supporting functions like Format,
Directory, Type, Copy, Delete, Optimize, and integrity
check. This makes Memory iButtons operate as conve-
niently as floppy disks. Details about the Presentation
layer are given in Chapter 7, “iButtonFile Structure,” and
Chapter 9, “Systems Integration Software.”
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B. Section Summary
Because of different target applications iButtons differ in
their logical behavior. The NV RAM iButtons DS1992 to
DS1996 comprise a uniform group. With its password–
protected memory, the DS1991 is also a group of its
own, although it is compatible with the first three layers.
The DS1990A contains only an electronic serial num-
ber; it has limited network capabilities but is completely
compatible with the first three layers.

EPROM iButtons (DS1982 to DS1986) can replace NV
RAM iButtons in applications where data is written once

and read many times (“WORM”) or where adding data
becomes more important than rewriting it. The semicon-
ductor technology implies a different programming tech-
nique, resulting in limited compatibility on the Transport
layer. Special commands are provided to support byte
applications as well as file–oriented applications. The
complete iButton compatibility matrix is shown in Table
5–1. Table 5–2 gives a summary of all command words
used with iButtons.

TOUCH MEMORY COMPATIBILITY  Table 5–1

Device Type Physical Layer Link Layer Network Layer Transport
Layer

Presentation
Layer

DS1990A yes yes yes* N/A N/A

DS1991 yes yes yes no**** no

DS1992 yes yes yes yes yes

DS1993 yes yes yes yes yes

DS1994 yes yes yes yes yes

DS1995 yes yes yes yes yes

DS1996 yes yes yes yes yes

DS1982 yes yes yes yes*** yes

DS1985 yes yes yes yes** yes

DS1986 yes yes yes yes** yes

DS1920 yes yes yes no**** N/A

* not all ROM functions applicable
** read compatible to NVRAM iButtons, different implementation of write commands
***The Read Memory command operates almost identically to NVRAM iButtons, different implementation of write
commands.
**** application–specific command set, see Chapter 6 for details
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iButton COMMANDS  Table 5–2

ROM Scratchpad Memory Password Status

Device
Commands

p
Commands

y
Commands Commands Commands

Device
Type Skip Read ReadType

Read
Skip

Match
S h

Read
Write
C

Read Write Write
Read
WriteSearch Copy Write

DS1990A 33H
(0FH)

N/A
N/A
F0H

––– ––– ––– ––– –––

DS1991 33H
CCH
55H
F0H

69H
96H
3CH

66H 99h 5AH –––

DS1992 33H
CCH
55H
F0H

AAH
0FH
55H

F0H ––– ––– –––

DS1993 33H
CCH
55H
F0H

AAH
0FH
55H

F0H ––– ––– –––

DS1994 33H
CCH
55H
F0H

AAH
0FH
55H

F0H ––– ––– –––

DS1995 33H
CCH
55H
F0H

AAH
0FH
55H

F0H ––– ––– –––

DS1996 33H
CCH
55H
F0H

AAH
0FH
55H

F0H ––– ––– –––

DS1982 33H
CCH
55H
F0H

––– F0H/C3H 0FH ––– AAH
55H

DS1985 33H
CCH
55H
F0H

––– F0H/A5H 0FH ––– AAH
55H

DS1986 33H
CCH
55H
F0H

––– F0H/A5H 0FH ––– AAH
55H

DS1920 33H
CCH
55H
F0H

BEH
4EH
48H

Recall: B8H ––– ––– Convert:
44H
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II. Details

A. Fault–Tolerant Data Transfer

A.1. Introduction
iButtons are designed to operate under uncertain elec-
trical conditions. The contact between master and
iButton may break at any time and resume shortly after-
wards. Despite these conditions, no data will be lost. If
data is garbled, it must be discovered immediately
before the data is used elsewhere.

Similar bad operating conditions are found with mag-
netic storage media like floppy disks. Floppies therefore
don’t store data bit by bit along the whole track. Instead
the track (i.e., a concentric cylinder) is divided into many
sectors. Each sector is preceded by a small identifica-
tion sector containing data about the sector itself.
Between identification sector and data sector, and vice
versa, are gaps containing constant bit patterns, but no
stored data. To detect reading errors, both the identifica-
tion sector and the data sector are extended by a 16–bit
Cyclic Redundancy Check (CRC) pattern. This pattern
is generated from the preceding data using a standard-
ized algorithm. While reading, the disk controller recal-
culates the pattern. If the recalculated pattern and the
pattern read from the disk match, the complete data
transfer is assumed to be correct. Otherwise, another
trial is started to read again. If data has to be written, the
same calculation is done and the CRC pattern is written
following the last data bit. Verification is possible by
immediate reading after a write. This basic principle to
cope with a difficult environment has proven so suc-
cessful that it is used with every floppy system and most
other magnetic storage media worldwide.

A.2. ROM–Section
Although Memory iButtons are silicon chips packaged
in a MicroCan, they show amazing similarities to floppy
disks. Both transfer data in a bit–sequential manner,
have to cope with a difficult environment, and are orga-
nized into pages or sectors, respectively. Each iButton
has one identification page, called ROM, containing
device data. Unlike floppy disks, however, Memory iBut-
tons need no gaps between data areas; every storage
location is available for data. Because of the common
demands of data transfer and error detection, it is no
surprise that iButtons apply similar procedures to
secure the data transfer. Unlike floppy systems that use
the same CRC algorithm to protect the short identifier
and the long data sector, iButtons apply different algo-
rithms for each type of storage area.

The identifier, which is the ROM in iButton terminology,
uses a one–byte CRC to protect the family code and the
serial number. The CRC is generated using the polyno-
mial x8 + x5 + x4 + 1 and is written in its true form to each
individual iButton chip by laser during manufacture. The
identifiers of floppy sectors are written during the pro-
cess of formatting the disk; unlike the identifier of an
iButton, they can be erased by reformatting the disk.

To check if the ROM data is read correctly, the master
reading the iButton has to recalculate the CRC and
compare it with the value read from the device. (Detailed
documentation on CRCs is found in the appendix of this
book.) Non–matching values occur if the contact was
bad or if several iButtons are connected at the same
time. Repeated readings with the same data pattern (1’s
and 0’s) but a mismatched CRC indicate several
iButtons in parallel. How to obtain the ROM data of all of
these iButtons is discussed in the subsection “Network-
ing Capabilities” later in this chapter.

A.3. Memory Section
Despite of the fact that the logic of NV RAM iButtons
supports writing single or multiple bytes, it is recom-
mended to always write complete pages as is done with
sectors of floppy disks. The iButton file system is also
based on pages. It defines each page to start with the
length byte indicating the number of bytes to follow, not
counting the CRC, which takes two bytes instead of one
as with the ROM. This structure is close to the definition
of data sectors of floppies and allows easy checking of
single pages or data packets. A two–byte CRC, the
standardized CRC16, is used here since a one–byte
CRC would not provide an adequate security level for
the larger amount of data. The CRC16 is defined by the
polynomial x16 + x15 + x2 + 1. It is calculated from the
data including the length byte and appended in its
inverted form (1’s complement) to the data as it is written
to the scratchpad. Before starting the CRC calculation,
the CRC16 accumulator must be initialized by setting it
equal to the Memory iButton page number where data is
to be read or written. This allows the physical page
address to be included as a factor in the CRC16 calcula-
tion for the data at a particular location. After verification
of the scratchpad, the total page is copied to the final
location in the Memory iButton. (For more details on
CRCs of iButtons please refer to the appendix.) To
check data integrity while reading the master will pro-
ceed as with ROM data, but use the CRC16 algorithm.
The fact that every page of data has its own CRC is one
of the fundamentals of the iButton file system. A mis-
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matched CRC indicates a page addressing error, bad
contacts, or the command Skip ROM was used in a situ-
ation where several iButtons are connected in parallel.
Reading 0’s permanently will indicate a short or a mis-
sing pull–up resistor at the 1–Wire bus; reading only 1’s
without receiving a Presence Pulse indicates a broken
data line.

B. Command Processing

B.1. Introduction
iButtons are ready to accept commands as soon as they
have reached the Network layer or the Transport layer.
In each layer, an iButton can accept exactly one of the
applicable commands. After execution of a Network
command, the iButton automatically reaches the Trans-
port layer. If no data transfer is requested except
another Network command, e.g., Search ROM, the
iButton needs to receive a Reset Pulse.

Usually the normal sequence of communication is

1. Master: sends Reset Pulse. 
T.M.: sends Presence Pulse.

2. Master: sends ROM Command, possibly followed
by data or read time slots. 
T.M.: listens or sends data.

3. Master: sends Memory Function Command, possi-
bly followed by data or read time slots. 
T.M.: listens or sends data.

After the memory command is executed, the master
must send a Reset Pulse to begin another communica-
tion session with iButtons on the 1–Wire bus.

This method of operation requires no special addres-
sing of a command register. Simply the fact that bits are
sent after reaching a certain layer qualifies them as
commands. Invalid command codes set iButtons into an
idle state; the next Reset Pulse will synchronize them
again.

B.2. Bit Sequence
Commands and data can be understood as binary num-
bers. The least significant bit of a byte or character is
always the first to be sent or received. Multiple precision
numbers are usually stored with the least significant
byte at the lower address. The first character of a text
string also has a lower address than the last one. There-
fore, to write data to an iButton, the master has to start at
the lowest address, load a byte, generate the time slot
that corresponds to the least significant bit, shift the byte
to the right, generate the next time slot, etc. The iButton

will assemble the bits into bytes and store them at
ascending addresses. Reading iButtons works gener-
ally in the same way. Instead of Write time slots, the
master generates Read time slots, enters received data
bits into the most significant position of a shift register,
shifts to the right and stores the data in the same
sequence as it had been loaded for writing. Again, the
iButton will act as the master did while writing the data
and advance the memory address after every trans-
ferred byte. This structured method of operation is fun-
damental to iButton communication.

C. MicroLAN – Networking Capabilities

C.1. Introduction
All iButton Products are designed to operate in a net-
working environment. This extends the field of applica-
tions to higher storage capacity and to distributed data
storage using only one common data line to the master.
Networks always require identification numbers of all
nodes within the network.  iButtons have their individual
ROM, which is well suited as a node identifier. The user
needn’t worry about conflicting node identifiers. The
open drain interface of the 1–Wire data bus avoids
potential problems if bus conflicts occur. In fact, the
1–Wire data interface actually is a 1–Wire LAN (Micro-
LANTM) with all features required for single master mul-
tidrop bus operation.

C.2. Command Overview
To operate standalone as well as on a bus, iButtons sup-
port the following ROM–based Networking Commands:
Read ROM, Skip ROM, Match ROM and Search ROM.
After execution of any ROM command, the Transport
layer is reached. The command Read ROM, code 33H,
is used to identify a device on the 1–Wire bus or to find
out if several devices are connected at the same time.
After sending this command the master has to generate
64 read time slots. The iButton will send its ROM con-
tents least significant bit first, starting with family code,
followed by the serial number and the CRC byte. If sev-
eral iButtons are connected, no reading will provide a
matching CRC–byte. In this case, the command Search
ROM F0H must be used to determine the ROM contents
of the devices before they can be addressed. If the ROM
contents are not of interest because there can be only
one iButton on the data bus, the search can be skipped
by sending the Skip ROM command, code CCH.
Immediately after this command, the device reaches the
Transport layer.
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The command Match ROM can be used to address one
device if one of several iButtons are connected in paral-
lel. The ROM contents act as a device address to acti-
vate exactly one device. The same ROM contents in
more than one device are impossible due to strict
manufacturing control. If two iButtons have the same
serial number, their family codes will be different. In this
manner, any confusion or contention is avoided. The
Match ROM command, code 55H, requires the ROM
contents of the desired device to be sent by the master
during the 64 time slots following the command. The
sequence of the bits must be the same as they were
delivered by reading the ROM, i.e., least significant bit
first, starting with family code, followed by the serial
number and the CRC. All iButtons whose ROM contents
do not match the requested code will stay idle until they
receive another Reset Pulse.

C.3. Search ROM Command
Even if the master does not know the serial numbers of
the devices connected to the 1–Wire bus, it is possible
to address one single device at a time. This is done by
using the command Search ROM, code F0H. This com-
mand acts like Read ROM combined with Match ROM.
All iButtons will sequentially send the true and the false
value of the actual ROM bit during the two Read time
slots following the Search ROM command. If all devices
have a 0 in this bit position, the reading will be 01; if the
bit position contains a 1, the result will be 10. If both, a 1
and a 0 occur in this bit position, reading will result in two
0 bits, indicating a conflict. The master now has to send
the bit value 1 or 0 to select the devices that will remain
in the process of selection. All deselected devices will
be idle until they receive a Reset Pulse. After the first
stage of selection, 63 reading/selecting cycles will fol-
low, until finally the master has learned one device’s
ROM code and simultaneously has addressed it. Each
stage of selection consists of two Read time slots and
one Write time slot. The complete process of learning
and simultaneous addressing is about three times the
length of the Match ROM command, but it allows selec-
tion of all the connected devices sequentially without
knowing the ROM values beforehand. In an application
where the iButtons are fixed in position on the 1–Wire
bus, it is most efficient for the master to evaluate all
ROM contents with the Search ROM command and

then to use the Match ROM command to address spe-
cific devices. If the application requires constant identifi-
cation and communication with new devices as they
come and go, it will be necessary to use the Search
ROM command to identify and address each new part.

A flowchart of all ROM Commands is shown in Figure
5–2. Since the logic of the Search ROM command is the
most complex, the following example is used to illustrate
it step by step.

Four devices are connected to the 1–Wire bus. Their
binary ROM contents are:

device 1: xxxxxx10101100 
device 2: xxxxxx01010101 
device 3: xxxxxx10101111 
device 4: xxxxxx10001000

The x’s represent the higher remaining bits. Shown are
the lowest eight bits of the ROM contents. The least sig-
nificant bit is rightmost in this representation. The
search process runs as follows:

1. The master begins the initialization sequence by
issuing a Reset Pulse. The iButtons respond by
issuing Presence pulses.

2. The master will then issue the Search ROM com-
mand on the 1–Wire Bus.

3. The master reads one bit from the 1–Wire bus. Each
device will respond by placing the value of the first
bit of its respective ROM data onto the 1–Wire bus.
Devices 1 and 4 will place a 0 onto the 1–Wire bus;
that is, they pull it low. Devices 2 and 3 will send a 1
by allowing the line to stay high. The result is the log-
ical AND of all devices on the line; therefore the mas-
ter reads a 0. The master will read another bit. Since
the ROM Search command is being executed, all
devices respond to this second read by placing the
complement of the first bit of their respective ROM
data onto the 1–Wire Bus. Devices 1 and 4 will send
a 1; devices 2 and 3 will send a 0. Thus the 1–Wire
bus will be pulled low. The master again reads a 0 for
the complement of the first ROM data bit. This tells
the master that there are devices on the bus that
have a 0 in the first position and others that have a
1. If all devices had a 0 in this bit position, the reading
would be 01; if the bit position contained a 1, the
result would be 10.
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ROM FUNCTIONS FLOW CHART   Figure 5–2
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4. The master now decides to write a 0 on the 1–Wire
bus. This deselects Devices 2 and 3 for the remain-
der of the search pass, leaving only devices 1 and
4 participating in the search process.

5. The master performs two more reads and receives
a 0 followed by a 1 bit. This indicates that all active
devices have a 0 in this bit position of their ROM.

6. The master then writes a 0 to keep devices 1 and 4
selected.

7. The master executes two reads and receives two 0
bits. This again indicates that both 1 and 0 exist as
the third bit of the ROM of the active devices.

8. The master again writes a 0. This deselects device
1, leaving device 4 as the only active device.

9. The following reads to the end of the ROM will not
show bit conflicts. Therefore, they directly tell the
master the ROM contents of the active device. After
having learned any new ROM bit, the master has to
resend this bit to keep the device selected. As soon
as all ROM bits of the device are known and the last
bit is resent by the master, the device is ready to
accept a command of the Transport layer.

10. The master must learn the other devices’ ROM data.
Therefore, it starts another ROM Search sequence
by repeating steps 1 through 7.

11. At the highest bit position, where the master wrote
a 0 at the first pass (step 8), it now writes a 1. This
deselects device 4, leaving device 1 active.

12. As in step 9, the following reads to the end of the
ROM will not show bit conflicts. This completes the
second ROM Search pass where the master has
learned another ROM’s contents.

13. The master must learn the other devices’ ROM data.
Therefore, it starts another ROM Search sequence
by repeating steps 1 to 3.

14. At the second highest bit position where the master
wrote a 0 at the first pass (step 4), it now writes a 1.
This deselects devices 1 and 4, leaving devices 2
and 3 active.

15. The master sends two read time slots and receives
two 0 bits, indicating a bit conflict.

16. The master again decides to write a 0. This dese-
lects device 3, leaving device 2 as the only active
device.

17. As in step 9, the following reads to the end of the
ROM will not show bit conflicts. This completes the
third ROM Search pass where the master has
learned another ROM’s contents.

18. The master must learn the other devices’ ROM data.
Therefore it starts another ROM Search sequence
by repeating steps 13 to 15.

19. At the highest bit position where the master wrote a
0 at the previous pass (step 16), it now writes a 1.
This deselects device 2, leaving device 3 active.

20. As in step 17, the following reads to the end of the
ROM will not show bit conflicts. This completes the
fourth ROM Search pass where the master has
learned another ROM’s contents.

The general principle of this search process is to dese-
lect one device after another at every conflicting bit posi-
tion. At the end of each ROM Search process, the mas-
ter has learned another ROM’s contents. The next pass
is the same as the previous pass up to the point of the
last decision. At this point the master goes in the oppo-
site direction and continues. If another conflict is found,
again 0 is written, and so on. After both ways at the high-
est conflicting bit position are followed to the end, the
master goes the same way as before but deciding oppo-
sitely at a lower conflicting bit position, and so on, until all
ROM data are identified.

An optimized flowchart of the Search ROM algorithm is
shown in Figure 5–3. This figure explains how to per-
form a general ROM search. For the purpose of this
flowchart, the ROM data is accumulated into a bit array
named ROM Bit, with bits numbered 1 to 64. Setup must
be called before any other function to initialize the
1–Wire system. A call to “First” resets the search to the
beginning and identifies the first ROM code, and calls to
“Next” identify successive ROM codes. A false value
returned indicates no more ROM codes to be found.

The time required to learn one ROM’s contents (not
counting the master’s CPU time) is 960 µs+(8+3*64)*61
µs =13.16 ms. Thus it is possible to identify up to 75 dif-
ferent iButtons per second.
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ROM SEARCH Figure 5–3
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C.4. Overdrive
As has been explained above, the ROM contents play
an important role in addressing and selecting devices
on the 1–Wire bus. All devices but one will be in an “idle”
state after the Match ROM command or the Search
ROM command has been executed. They will return to
the normal state only by receiving a Reset pulse.

Since devices with overdrive capability will be distin-
guished from others by their family code and the two
additional ROM commands Overdrive Skip ROM and
Overdrive Match ROM, they can easily be identified and
addressed. The first transmission of the ROM com-
mand itself takes place at the ”normal” speed that is
understood by all 1–Wire devices. After a device with
overdrive capability has been addressed and set into
overdrive mode (i.e., after the appropriate ROM com-
mand has been received) further communication to that
device has to occur at overdrive speed. Since all dese-
lected devices remain in the idle state as long as no
Reset pulse of regular duration is detected, even multi-
ple overdrive components can reside on the same
1–Wire bus. A Reset pulse of regular duration will reset
all 1–Wire devices on the bus and simultaneously set all
overdrive–capable devices to regular speed. The first
overdrive–capable devices are the DS1995, DS1996
and DS1986. For a full description of the overdrive pro-
tocol please refer to one of these product data sheets.

D. Data Transfer
At the Transport layer, iButtons are split into three differ-
ent groups: a) NV RAM devices, b) EPROM devices,
and c) the DS1991 MultiKey. The following sections
explain data transfer of NV RAM devices and EPROM
devices. For the DS1991 MultiKey as well as other
iButtons (no memories), see Chapter 6.

D.1. Memory iButtons (NVRAM)
All iButtons in this group share the same command
structure at the Transport layer. The available com-
mands are Read Memory, Write Scratchpad, Read
Scratchpad, and Copy Scratchpad.

D.1.a. Transfer Status
Any memory access within the Transport layer requires
addressing of data. Because of the serial data transfer,

NV RAM iButtons employ three address registers,
called TA1, TA2 and E/S (see Figure 5–4). Registers
TA1 and TA2 must be loaded with the target address to
which the data will be written or from which data will be
sent to the master upon a Read command. Register E/S
acts like a byte counter and Transfer Status register. It is
used to verify data integrity with Write commands.
Therefore, the master only has read access to this regis-
ter. The lower five bits of the E/S register indicate the
address of the last byte that has been written to the
scratchpad . This address is called Ending Offset. Bit 5
of the E/S register, called PF or “partial byte flag,” is set if
the number of data bits sent by the master is not an inte-
ger multiple of 8. Bit 6, OF or “Overflow,” is set if more
bits are sent by the master than can be stored in the
scratchpad. Note that the lowest five bits of the target
address also determine the address within the scratch-
pad, where intermediate storage of data will begin. This
address is called byte offset. If the target address for a
Write command is 13CH for example, then the scratch-
pad will store incoming data beginning at the byte offset
1CH and will be full after only four bytes. The corre-
sponding ending offset in this example is 1FH. For best
economy of speed and efficiency, the target address for
writing should point to the beginning of a new page, i.e.,
the byte offset will be 0. Thus the full 32–byte capacity of
the scratchpad is available, resulting also in the ending
offset of 1FH. The iButton File System also organizes
the data packets of files exactly this way to achieve the
best match to the hardware characteristics of the
iButton device.

For special purposes, however, such as accessing the
clock and associated registers of the DS1994, it is nec-
essary to write one or several contiguous bytes some-
where within a page. This is the reason for the imple-
mentation of the byte offset mechanism. The ending
offset together with the Partial and Overflow Flag is
mainly a means to support the master checking the data
integrity after a Write command. The highest valued bit
of the E/S register, called AA or Authorization Accepted,
acts as a flag to indicate that the data stored in the
scratchpad has already been copied to the target
memory address. Writing data to the scratchpad clears
this flag.

MEMORY iButton ADDRESS REGISTERS TA1, TA2 AND E/S Figure 5–4
T7 T6 T5 T4 T3 T2 T1 T0

T15 T14 T13 T12 T11 T10 T9 T8

AA OF PF E4 E3 E2 E1 E0
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D.1.b. Reading
To read data from a Memory iButton the master first sets
the internal logic of the device to the Transport layer.
This can be done by sending a Reset Pulse followed by
a Read ROM command. After the ROM contents are
verified with the CRC byte, the master sends the READ
Memory command, code F0H, followed by the low byte
and the high byte of the target address. The least signifi-
cant address bit is sent first. Now with every Read Data
time slot, the master will get one more of the addressed
data bits; again the least significant bit of a byte is sent
first. After a complete byte is transmitted, the Memory
iButton will increment the address pointer to transmit the
next byte. Thus the entire memory can be read. Page
boundaries have no impact on reading. After the data of
the highest available address is sent out, the master will
read 1’s during all subsequent Read time slots.

D.1.c. Writing with Verification
To write data to the Memory iButton, the scratchpad has
to be used as intermediate storage. First the master
issues the Write Scratchpad command to specify the
desired target address, followed by the data to be writ-
ten to the scratchpad. In the next step, the master sends
the Read Scratchpad command to read the scratchpad
and to verify data integrity. As preamble to the scratch-
pad data, the Memory iButton sends the requested tar-
get address TA1 and TA2 and the contents of the E/S
register. This speeds up checking the data integrity. If
one of the flags OF or PF is set, data did not arrive cor-
rectly in the scratchpad. The master does not need to
continue reading; it can start a new trial to write data to
the scratchpad. Similarly, a set AA flag indicates that no
write scratchpad command has been received by the
Memory iButton since the last copy scratchpad com-
mand. If everything went correctly, all three flags are
cleared and the ending offset indicates the address of
the last byte written to the scratchpad. Now the master
can continue verifying every data bit. After the master
has verified the data, it has to send the Copy Scratchpad
command. This command must be followed exactly by
the data of the three address registers TA1, TA2 and E/S
as the master has read them verifying the scratchpad.
As soon as the Memory iButton has received these
bytes, it will copy the data to the requested location
beginning at the target address. Copying takes about 30
µs. If after copying the scratchpad is read again, the set
AA flag indicates that the data in the scratchpad is now
obsolete and the device can accept new data without
losing anything.

This complex mechanism for writing is implemented to
provide the highest possible level of data integrity with-
out losing too much speed. To verify correct reading, it is
highly recommended to initialize the CRC16 with the
iButton page number, to put a length byte at the begin-
ning of each data packet, and to append an inverted
CRC16 double byte at the end of the data, as is prac-
ticed with the iButton File System (see Chapter 7, “File
Structure”). Details of writing data to Memory iButtons
are shown in Figure 5–5.

Directly after the Write Scratchpad command, code
0FH, the master must send the target address and data.
The maximum number of bytes the scratchpad accepts
without overflow is 20H minus data offset, which is the
five least significant bits of the target address. After the
data is transferred, the master must send a Reset Pulse
and again set the Memory iButton to the Transport layer.
The Read Scratchpad command, code AAH, activates
the Memory iButton to reply with the target address,
ending offset, with transfer status and the received data.
In the third step, the master must again issue a Reset
Pulse, set the iButton to the Transport layer, and send
the Copy Scratchpad command, code 55H, followed by
the actual target address and the E/S byte. Only if these
three bytes match those stored in the Memory iButton
registers is the command accepted. As long as copying
is in progress, the device will ignore any Reset pulse.

D.2. Add–Only iButtons (OTP EPROM)
The high–capacity devices in this group share the same
command structure at the Transport layer. The available
commands are Read Memory, Extended Read Memory
(not available with the DS1982), Write Memory, Read
Status and Write Status. Since the scratchpad is only
one byte long, it needs no special addressing. The write
command implies writing to the scratchpad first, before
data is copied to memory by the program pulse.

D.2.a. Transfer Status
The scratchpad of EPROM iButtons is only one byte.
Thus special scratchpad commands and a transfer sta-
tus register are not required. In the same way as for NV
RAM–based iButtons, the bus master must supply the
target address TA1 and TA2. EPROM iButtons have a
CRC generator onboard to enhance data integrity for
both reading and writing.   For the high–capacity devices
the CRC16 algorithm is used; the CRC is sent out in bit–
inverted form (one’s complement) least significant byte
first.
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MEMORY FUNCTION FLOW CHART NVRAM DEVICES  Figure 5–5
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D.2.b. Status Memory
Due to their special features, EPROM iButtons or Add–
Only iButtons as they are called, also require additional
memory to store write protect flags, redirection bytes
and a bitmap indicating used and empty pages. The bit-
map supports the operating system, while the other sta-
tus information interacts directly with the logic on–chip,
either by preventing an action (write protect) or by being
sent to the master as part of a data stream (redirection
byte). All of these pieces of status and management
information are stored in the status memory of the
device. With the exception of the DS1982, the status
memory has the same predetermined structure for all
devices (see Figure 5–6).

The status address range contains 512 bytes (000H to
1FFH). This is sufficient for up to 256 pages, equal to the
upper limit of the extended file structure (for details see
Chapter 7 of this book). The first 32 bytes (address
000H to 01FH) represent all write protect bits for the
data memory. Bit 0 of the first byte of the status memory
is associated with page 0 and so on. The next 32 bytes
(address 020H to 03FH) are used to write protect the
redirection byte of each page. Bit 0 of the first byte of this
group is associated with page 0. The following bytes

(address 040H to 05FH) store the bitmap of used pages.
(With EPROM devices, this bitmap is not stored as part
of the device directory or as a separate file. Keeping the
same scheme as is used with NV RAM iButtons is
theoretically possible but very uneconomical, since an
update of a single bit would require rewriting and redi-
recting at least one total page of memory.) Starting at
address 100H, the memory area for redirection bytes
begins. Page numbers range from 0 to 255 (0 to FFH).
The physical address of the redirection byte is identical
to the page number plus 256 (or page number in hex
plus 100H). The address range of 60H to 0FFH is
reserved for future extensions.

If certain areas of status memory are not used since the
device has less than 256 pages, these areas are not
implemented in silicon. Reading these gaps produces
1’s on the data bus; writing is ignored. The status
memory can be programmed in the same way as the
data memory. To allow fast and integrity–checked
access, the page size of status memory is limited to 8
bytes (instead of 32). After a page boundary is encoun-
tered (xx7H), the device will send an inverted CRC16 to
the master.

STATUS MEMORY MAP OF ADD–ONLY i Buttons  Figure 5–6
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The DS1982, as a 4–page device, does not support the
full functionality of Add–Only iButtons. Therefore its
total status memory is organized as one page of 8 bytes,
avoiding big gaps in the memory map. The first 5 bytes
contain status information. The contents of the other
bytes can be ignored by the application software.
Details on the DS1982 are found in Chapter 6.

D.2.c Reading
Reading Add–Only iButtons is very similar to reading
NV RAM–based iButtons. Figure 5–7 shows the flow-
chart of the available read commands. Compared to the
path READ MEMORY of Figure 5–5, there is one minor
difference:

If the master continues reading beyond the end of
memory, an Add–Only iButton will send out another
CRC16 after the last memory byte is transmitted. Fur-
ther Read Time Slots will transmit 1’s only. An NV RAM
device will send 1’s as soon as the end of memory is
reached. The command code F0H to read an Add–Only
iButton remains exactly the same as for NV RAM
iButtons. If software already exists using the file struc-
ture as described in Chapter 7, Add–Only iButtons can
be integrated into the system by discarding the addi-
tional CRC information.

The Read Memory command allows NVRAM–compat-
ible reads of Add–Only iButtons in an environment where
the device is programmed once according to the rules of
the extended file structure.  In an environment where
Add–Only iButtons act as data carriers that store valid
and invalid information at the same time, it is clumsy to
first access the status memory to find out if the page you
want to read is still up–to–date.  For this reason and to
support files as well as byte applications, there is an addi-
tional read function with Add–Only iButtons called
Extended Read Memory, command code A5H.

The major difference between Read Memory and
Extended Read Memory is that in an Extended Read the
addressed data is preceded by the redirection byte of the
addressed page and the inverted CRC16 of the com-
mand, address and redirection byte. As the end of a
memory page is encountered, the master will receive an
inverted CRC16 of the data just read from this page. This
CRC allows the master to prove data integrity even for
byte applications by comparing the received CRC with its
own calculations. If the master continues reading, the next
bytes to be received are the redirection byte of the next

page followed by an inverted CRC16 of this redirection
byte. The next bits to be received are data from memory.

Unprogrammed redirection bytes read FF hexadecimal.
If the redirection byte is different from FFH, this will sig-
nal the master that the data is not up–to–date. The one’s
complement of the redirection byte is the page address
of the new data. Without significant loss of time, the
master can start another read access, this time to the
page that is indicated by the redirection byte. This pro-
cess can be repeated until finally a page without redirec-
tion is accessed, containing the latest information.
Reading redirected pages may also be of interest if
intermediate versions of data are important.

The Extended Read Memory command provides two
CRC16s for every pass. The CRC16 at the end of a data
page is generated by clearing the CRC accumulator first
and then shifting in all data bytes starting at the first
addressed location of the page. The calculation of the
CRC after the redirection byte depends on whether this
is the first pass or a subsequent pass through the com-
mand flow without a Reset in between. For the first pass
the CRC is generated by clearing the CRC accumulator,
shifting in the command, address bytes TA1 and TA2
and the redirection byte. For subsequent passes the
CRC generator is also cleared and then only the redirec-
tion byte is shifted in.

A flowchart similar to the one for reading memory data
applies to the READ STATUS command. The major dif-
ference is the command code AAH and the inverted
CRC16 sent to the master at the end of each 8–byte sta-
tus memory page. Since the information inside the sta-
tus memory consists of independent bits and bytes that
are likely to be updated later, it is not possible to store an
inverted CRC16 value in the data. The only means to
check for data integrity is the inverted CRC16 generated
by the device itself.

For all read commands the on–chip CRC generator is ini-
tially cleared to zero. With the Read Memory command,
the CRC16 at the end of memory is generated by shifting
in the command, address bytes TA1 and TA2 and all data
bytes starting at the first addressed memory location.

For Read Status the calculation of the CRC at the end of
a page depends on whether the end–of–page condition
is encountered at the first pass or at a subsequent pass
through the command flow without a Reset in between.
For the first pass the CRC is generated by clearing the
CRC accumulator, shifting in the command, address
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MEMORY FUNCTION FLOW CHART EPROM READ COMMANDS  Figure 5–7
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MEMORY FUNCTION FLOW CHART EPROM READ COMMANDS  Figure 5–7 (cont’d)
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bytes TA1 and TA2 and the data bytes starting at the first
addressed location of the page. For subsequent passes
the CRC generator is also cleared and then all data from
the first to the last byte of the status memory page are
shifted in.

D.2.d. Writing with Verification
Due to their different technology, writing or program-
ming Add–Only iButtons differs significantly from writing
NV RAM–based iButtons. Generally, the write proce-
dure for Add–Only iButtons is much simpler, since it
involves only one command. Figure 5–8 shows details.

After the master has sent the command code 0FH
(WRITE MEMORY), the next data to follow is target
address TA1, TA2 and one data byte. So far this is
exactly the same as writing one byte to the scratchpad
of an  NV RAM iButton. With the next sixteen read data
time slots, the master receives an inverted CRC16 of
the command, target address and data byte. Then the
master checks the CRC. If it is correct, the master sends
a programming pulse to the bus. This pulse will program
the addressed EPROM memory location using the data
byte value loaded into the scratchpad. With the next
eight read data time slots, the master will read back the
byte that has just been programmed. By comparison of
this byte with the data byte sent to the device, the master
will decide if the programming was successful. If unsuc-
cessful, the master can attempt to program this byte
again by issuing a Reset Pulse, going through the ROM
command level, and giving another WRITE MEMORY
command along with TA1, TA2 and the desired data
byte. If successful and the programmed byte was not
the last byte of the data memory, the Add–Only iButton
will advance its internal address counter, load the new
address into its internal CRC generator, and wait for the
next data byte. After the next data byte is received, the
master will read back the CRC16 of the new address
and data byte. Now another programming pulse may be
applied, and so on.

The calculation of the CRC depends on whether the
byte to be written is the first during the programming
command flow or any subsequent byte without a Reset
in between. For the first byte the CRC is generated by
clearing the CRC accumulator, shifting in the command,
address bytes TA1 and TA2 and the data byte itself. For
subsequent bytes the CRC generator is loaded with the
new (incremented) address and then the data byte is
shifted in.

Programming status bytes is done in the same way as
with data bytes. The only difference is the command
code 55H. For calculation of the CRC the same algo-
rithm as for programming data bytes applies.

Attempts to write to gaps within the status memory are
ignored. If the uppermost memory location has just
been programmed and the master continues commu-
nication with the device, the device will be in an idle state
until it gets a reset pulse.

If the master sends a target address that is beyond the
available address range, the device will set the upper-
most address bits (i.e., those pointing out of the device)
to zero to signal this condition by a non–matching CRC.
The master must not send a programming pulse unless
the CRC received from the device and the CRC calcu-
lated by the master match. Otherwise the address
wraps around and an unwanted programming may
occur.

If Add–Only iButtons are intended for use with the
extended file structure, it is highly recommended not to
format the device before writing application data. All
data that the application requires to be stored in the
device should be assembled in the master and then be
written to the device as one process. This has the
advantage that the directory pages need not be redi-
rected and rewritten with every file that is initially copied
to the device, saving memory pages for future use.

It is important to note that reading unprogrammed Add–
Only Memories always produces FFH or 1’s. Program-
ming can only change the status of a bit cell from 1 to 0.
Although the process of programming is byte–oriented,
it is always possible to program individual bits from 1 to 0
(never from 0 to 1). If certain bits of a memory location
need to be programmed to 0’s, this can be done as fol-
lows: a) read the complete byte, b) set the desired bits to
0 with all other bits within the data byte set to 1, c) access
the Add–Only iButton, d) send write command, target
address, data byte, e) verify and send programming
pulse. This algorithm is applicable for the status
memory as well as for the data memory.

WARNING: The 12V programming pulse should not be
applied if there are non–EPROM types of iButtons on
the 1–Wire bus besides those specified by their family
codes to tolerate 12 volts. Damage to the other devices
may occur. The presence of other iButton types can be
determined with the Search ROM command.
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MEMORY FUNCTION FLOW CHART EPROM WRITE COMMANDS  Figure 5–8
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III. Summary

The logical behavior of iButtons can be grouped into
several communication levels or layers, such as Link,
Network and Transport. Each level uses its own means
to provide fault–tolerant data transfer. All iButtons are
designed to operate as nodes in a 1–Wire, multi–drop
network called MicroLAN. Special registers within NV
RAM–based iButtons and a structured 3–step proce-
dure using these registers guarantees data integrity
when writing to iButtons. Data integrity during reads is
checked by software means such as length byte indicat-
ing the number of valid bytes to follow and an inverted

CRC16 double byte at the end of the data packet, which
is usually the length of one page of 32 bytes or less. The
CRC16 is initialized with the iButton page number to
guarantee reading from the correct page. EPROM
iButtons or Add–Only iButtons are read–compatible
with NV RAM iButtons. The EPROM technology
requires special programming that provides the same
level of data integrity by means of an on–chip CRC gen-
erator. Add–Only iButtons also support the extended file
structure. In addition, the on–chip CRC generator and a
special read command make them well suited for byte
applications, where the CRC information cannot be
stored as part of the application data.
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CHAPTER 6: SPECIAL FUNCTIONS

I. Introduction

Chapter 5 discussed the logical behavior common to all
iButton Memories. This chapter explains device–spe-
cific functions or extensions to the logical standards.
Since the DS1991, as a password–secured memory,
targets different applications than the other iButtons, its
logical behavior is different. Therefore, it is detailed
here. In addition to the features of other Memory
iButtons, the DS1994 Memory Plus Time iButton has a
real–time clock with alarm and interrupt facilities.
Details about these extra features are also found in this
chapter. The DS1982 1K bit Add–Only iButton also tar-
gets at different applications than the high capacity
EPROM devices (byte storage rather than files).  This
requires special adaptations.  Details of this and prelimi-
nary information on the Temperature iButton and the
Addressable Switch are also given in this chapter.

II. ROM/NV RAM Devices

A. DS1990A Serial Number iButton
As explained in Chapter 2, the DS1990A includes only a
64–bit, laser–programmed ROM. It understands the
commands Read ROM and Search ROM. Applying
Match ROM or Skip ROM to the DS1990A will cause no
further activity on the 1–Wire bus. This makes the
DS1990A completely compatible with the Network
layer.

To be used as drop–in replacement for the DS1990, the
DS1990A also accepts the command code 0FH as a
read command. The DS1990 used 0FH for the Read
ROM command rather than the standard 33H and did
not support the Search ROM command. For this reason
only one DS1990 could be used on a 1–Wire bus along
with other iButtons.

The DS1990A is intended as a simple device for
applications where absolute identification is required.
Since the DS1990A takes all of the required energy from
the data line, it has a nearly unlimited lifetime. Further
details about the logical behavior of the DS1990A are
found in Chapter 5.

B. DS1991 MultiKey iButton

B.1. Overview
By design, the DS1991 does not supply data directly like
other iButton Memories so that information can be kept

secret. In addition to the ROM, the DS1991 incorporates
a 64–byte NV RAM scratchpad and three password–
protected memory pages, called Subkeys. This makes
the DS1991 differ from other iButton Memories at the
Transport layer and higher. Instead, the DS1991 has a
hardware file system implemented in the device: each
subkey can be used as an independent file, starting with
a file name, followed by the password and 48 bytes of
protected NV RAM. According to its intended applica-
tion, the DS1991 supports a different command set at
the Transport layer. Some of the commands are the
same as with other Memory iButtons, but binary codes
and addressing are different. The DS1991 supports the
scratchpad commands Write Scratchpad, Read
Scratchpad, Copy Scratchpad, the memory commands
Read Subkey, Write Subkey and the command Write
Password.

B.2. Scratchpad
The scratchpad can be used, as with other Memory
iButtons, as intermediate storage before data is trans-
ferred to the final memory. Unlike other Memory
iButtons, the DS1991 allows the user to select blocks of
eight bytes or the complete scratchpad to be copied.
Copying with the DS1991 means that the copied section
of the scratchpad will be cleared to 0’s after copying is
finished.

B.3. Memory
Instead of memory pages, the DS1991 contains three
subkeys. A subkey is very similar to a memory page.
The first eight bytes of a subkey contain the identifier
that can be used as the file name of the stored data. The
identifier is available for public reading with the Read
Subkey command. The next eight bytes store the pass-
word, which is write–only. The remaining 48 bytes of a
subkey are the password–secured memory. These
locations can only be accessed if the password is
known. Unlike other Memory iButtons, the DS1991
allows direct writing to the subkey. The command Write
Subkey has a relatively high potential of transferring
data incorrectly if the electrical contact is poor. There-
fore, it is recommended in touch applications to use the
scratchpad as intermediate storage for verifying before
the Copy Scratchpad command transfers the data.

Although the password and the identifier can be rede-
fined using the scratchpad, there is a special command
to write directly both password and identifier. This com-
mand, called Write Password, is essential to initialize a
subkey, since the Copy Scratchpad command requires
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knowledge of the current password to write a new one.
Directly writing the password of a subkey clears the
identifier, the current password, and the contents of the
protected memory to 0s. Copying the new password
from the scratchpad does not clear the identifier or the
protected memory.

B.4. Data Transfer
Flow charts of the commands implemented in the
DS1991 at the Transport layer are shown in Figures 6–1
and 6–2. Before the DS1991 reaches the Transport
layer, a reset and one ROM command have to be
executed. Like the other iButtons, the DS1991 accepts
only one data transfer command every time the Trans-
port layer is reached.

The binary structure of DS1991 data transfer com-
mands is different from other iButtons. Every DS1991
command consists of three bytes. The first of these
bytes is the command itself, similar to other iButtons.
The second byte provides addressing information. The
two most significant bits contain the requested subkey
number. Valid subkey numbers are 0, 1 and 2. Scratch-
pad read and write operations require the subkey num-
ber to be set to 3. The six lower bits of the address byte
contain the start address where data has to be read from
or written to. Valid addresses within subkeys are 10H to
3FH, since the first 16 bytes are reserved for the identi-
fier and password. Within the scratchpad, all addresses
between 00H and 3FH can be used. To write the pass-
word or copy the scratchpad, no byte address is
required; the corresponding bits in the addressing byte
must be 0. Copying data from the scratchpad to a sub-
key does not change the data addresses. Which of the
eight data blocks of eight bytes each, or whether the
entire scratchpad will be copied, is defined in the block
selector code that must be provided together with the
password of the desired subkey. The third byte of a
DS1991 data transfer command is simply the 1’s com-
plement (bit inversion) of the address byte. Table 6–1
summarizes the command structure. Like other
iButtons, the DS1991 requires commands and data to
be sent starting at the least significant byte and the least
significant bit.

The DS1991 has no user–readable registers for target
address, byte offset and ending offset. Also, the Partial
flag, Overflow flag and Authorization Accepted flag are
missing.

Thus a different method is required to provide data
integrity.  If the scratchpad is used as intermediate stor-
age for writing, reading it back will be sufficient to verify
the integrity of the new data.  After the data in the
scratchpad is determined to be correct, a single com-
mand is issued to transfer the new data to the target
subkey.  In order to guarantee integrity of this transfer,
one of nine different eight–byte codes is required, each
one differing from the other by at least 32 bits.  The sub-
key data format may include a preceding length byte
and a following inverted CRC16 double byte to allow for
easy checking of data integrity when reading.

Using Table 6–1, it is very easy to build up the complete
binary code for each command. Figures 6–1 and 6–2
explain what has to be sent by the master and what the
DS1991 will do. The commands Write Scratchpad and
Read Scratchpad don’t need further explanation. It is
evident that data cannot be written or read outside of
available address space. The Copy Scratchpad com-
mand, however, requires a Block Selector code to
define which bytes must be copied to the selected sub-
key. Block Selector codes (Table 6–2) are 8–byte binary
numbers. This highly redundant coding was chosen to
avoid inadvertent modification of subkey data. The
Block Selector code is sent starting at the least signifi-
cant byte with the least significant bit. If several but not
all blocks have to be copied, first the scratchpad can be
filled with the new data and then the Copy Scratchpad
command with the appropriate Block Selector code
must be sent. Every copy cycle requires a Reset Pulse
and a ROM command to be executed before the new
Copy command can be issued by the master. Therefore,
it can be more economical to load the complete scratch-
pad with data and to copy it in one stroke to the subkey,
even if some of the blocks remain effectively
unchanged.

Every access to the password–protected memory
requires sending the 8–byte password. For the
DS1991, the password is always eight bytes; every bit is
significant.

All commands shown in Figure 6–2 include reading the
subkey’s identifier before the master has to send the
password. As with the password, for the DS1991 the
length of the identifier is always eight bytes. The
DS1991 will count the time slots to decide if it has to lis-
ten or to answer. Therefore, it is important to always
read all of the bits of the identifier.
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DS1991 COMMAND STRUCTURE Table 6–1

Command 1st byte
2nd byte

3rd byteCommand 1st  byte
B7 B6 B5 B4 B3 B2 B1 B0

3rd byte

write
scratchpad 96H

1 1
any value

read
scratchpad 69H

1 1

00H to 3FH

copy
scratchpad 3CH

Sub–Key
0 0 0 0 0 0

ones complement
read

SubKey 66H

Sub Key
Nr.:

0       0
or

any value

ones com lement
of 2nd byte

write
SubKey 99H

or
0       1

or
1 0

10H to 3FH

write
password 5AH

1       0
0 0 0 0 0 0

BLOCK SELECTOR CODES OF THE DS1991 Table 6–2

Block Nr. Address Range LS Byte Codes MS Byte

0 to 7 00 to 3FH 56 56 7F 51 57 5D 5A 7F

0 identifier 9A 9A B3 9D 64 6E 69 4C

1 password 9A 9A 4C 62 9B 91 69 4C

2 10H to 17H 9A 65 B3 62 9B 6E 96 4C

3 18H to 1FH 6A 6A 43 6D 6B 61 66 43

4 20H to 27H 95 95 BC 92 94 9E 99 BC

5 28H to 2FH 65 9A 4C 9D 64 91 69 B3

6 30H to 37H 65 65 B3 9D 64 6E 96 B3

7 38H to 3FH 65 65 4C 62 9B 91 96 B3
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MEMORY FUNCTIONS FLOW CHART Figure 6–1
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MEMORY FUNCTIONS FLOW CHART (Continued) Figure 6–2
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B.5. Initialization
If new DS1991s need to be initialized, the password
actually stored is always unknown. In this situation, only
the command Write Password starts the devices’ prepa-
ration for the application. Although the flow chart for this
command looks very similar to Write Subkey, it differs in
one very important point: the public readable identifier is
compared to allow access, not the password.  That is,
instead of the unknown password, the master has to
transmit exactly the subkey’s identifier that it has just
read from the device. Writing the password will automat-
ically erase the data of the subkey. The command Write
Password also writes a new identifier for the subkey. As
soon as the new identifier (eight bytes) and the pass-
word (eight bytes) have safely arrived in the device, fur-
ther changes of identifier and password should be
copied from the scratchpad.

C. DS1992 Memory iButton: 1K Bit NV RAM
With a nonvolatile RAM capacity of four pages of 32
bytes each, the DS1992 is the smallest standard–fea-
ture Memory iButton. It reflects the complete standard
implementation of the Network and the Transport lay-
ers, and therefore also supports the iButton file system.
Refer to Chapter 5 for details about the logical behavior.

D. DS1993 Memory iButton: 4K Bit NV RAM
With a nonvolatile RAM capacity of 16 pages of 32 bytes
each, the DS1993 is a typical standard–feature Memory
iButton. Like the DS1992, it reflects the complete stan-
dard implementation of the Network layer and the
Transport layer and supports the iButton file system.

E. DS1994 Memory iButton: 4K Bit NV RAM
with Real Time Clock

E.1 Introduction
The DS1994 is a combination of all features of the
DS1993 with the addition of a real–time clock, interval

timer and cycle counter. Each of these counters can
generate an alarm or interrupt. All additional registers
are located in a separate memory page. Like the
DS1992 and DS1993, the DS1994 reflects the complete
standard implementation of the Network layer and the
Transport layer. Excluding the memory page containing
the timers and corresponding registers, the DS1994
also supports the iButton file system. In this section,
only the extra features of the device will be discussed.

E.2. Register Map, Device Control, Device
Status
The additional registers in the DS1994 that the DS1993
does not have are located in the highest page of the
device, starting at address 200H. Figure 6–3 shows the
address map of this page. The real–time clock occupies
five bytes. Time representation is a completely binary
number. Starting at a user–defined time point 0 (typi-
cally January 1st, 1970, 0:00:00 hours), the counter
runs at a speed of one increment every 1/256 second.
This time representation implies that the four most sig-
nificant bytes of the Real–Time Clock register contain
the number of seconds elapsed since the zero date.
Minutes, hours, days, months, years and day of week
are calculated via calendar software run on the master.
This time representation, as it is also used with the UNIX
operating system, allows country–specific daylight sav-
ings algorithms to be easily implemented by software. It
also allows easy correction for a fast or slow clock and
makes it easy to calculate differences between two
dates/times. The five bytes used for the real–time clock
are sufficient to code any time point within 136 years
starting from the zero date.
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ADDRESS MAP REGISTER PAGE OF DS1994, TIMEKEEPING AND SPECIAL FUNCTIONS
Figure 6–3

DEVICE STATUS REGISTER

DEVICE CONTROL REGISTER

REAL TIME COUNTER REGISTERS
5 BYTES

CYCLE COUNTER REGISTERS
4 BYTES

REAL TIME COUNTER ALARM REGISTERS
5 BYTES

INTERVAL TIME ALARM REGISTERS
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201H

202H   to
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207H   to
20BH    

20CH   to
20FH      

210H   to
214H        

215H   to
219H     

21AH   to
21DH    

Addresses 21EH and 21FH not available

LSByte
MSByte

LSByte
MSByte

LSByte
MSByte

LSByte
MSByte

LSByte
MSByte

LSByte
MSByte

The next counter is the interval timer. Like the real–time
clock, it has a capacity of five bytes and a resolution of
1/256 second. Depending on device control configura-
tion, this timer can automatically count the time that the
DS1994 is connected to a pulled–up data bus; alterna-
tively, it can be started and stopped under program con-
trol to measure time intervals.

The third counter is called cycle counter. It employs only
four bytes. Every time the DS1994 is detached from the
probe or the data line stays at a low level longer than
required for communication and control, the cycle
counter will increment. The interval time counter
together with the cycle counter allow easy monitoring of
active time and number of power on/off cycles if the
DS1994 is built into a machine using, for example, a
DS9098 MicroCan Retainer.

The memory locations following the counter registers
act as alarm registers. They have the same lengths as
the corresponding counters. If one of the counters
matches the value of its alarm register, an alarm flag will
be set . All three alarm flags are found in the Device Sta-
tus register, address 200H (see Figure 6–4). The alarm
flags for the Real Time Counter (RTF), Interval Timer
(ITF) and Cycle Counter (CCF) are read–only. Reading

the Device Status register will clear any of the alarm
flags to 0.

The master has two ways to determine whether an
alarm condition has occurred. Either it polls the Device
Status register or it enables the timer/counter interrupts
by setting the interrupt enable bits RTE, ITE or CCE of
the Device Status register to 0. How interrupts are sig-
nalled to the master and the consequences of using
interrupts are explained later in this chapter.

The Device Control register, address 201H, defines in
which mode the interval timer will operate and the mini-
mum delay that the cycle counter and interval timer will
need to recognize ”end of activity.” Figure 6–5 shows
the bit assignments of all functions. The Delay SELect
bit DSEL of the Device Control register allows the user
to select between 3.5 + 0.5 ms (bit cleared) and 123 + 2
ms (bit set). If the DS1994 is firmly connected to the
master and the interrupt facility is not used, the short
time delay is sufficient. To avoid inadvertent recognition
of end of activity in an application with bouncing probes
or enabling DS1994 interrupts, the long value should be
used. Otherwise, low times generated by the DS1994
itself, i.e., interrupts, could also be recognized as end of
activity if the short delay is programmed.
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DEVICE STATUS REGISTER OF DS1994 Figure 6–4
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Bit 5 of the Device Control register, called AUTO/MAN,
defines the mode of the interval timer. If this bit is set, the
interval timer is in the automatic mode; the interval timer
will be enabled by a high level on the data bus. If this bit
is cleared to 0, the interval timer is in the manual mode. It
will run only if the STOP/START bit, bit 6 of the Device
Control register, is cleared to 0. The level of bit 6 is a
don’t care if bit 5 is set to 1 (automatic mode).

The purpose of bit 4 of the Device Control register is to
control operation of the 32 KHz oscillator of the device.
This bit must be set to 1 to enable time and interval
counting. Only if the device is not in use should this bit be
cleared to conserve the energy of the embedded lithium
cell. When the DS1994 is shipped from the factory, the
OSC bit is cleared.

The DS1994 is well suited to act as a programmable
expiration controller. This function could be used to
force a service call if a machine has been used for a pre-
defined number of operating hours, a certain number of
power on/off cycles, or if a certain date is reached. To
avoid manipulation in such applications, all counters
with alarm registers can be individually write protected
after they have been loaded with the desired values.
Each of the counters has its own write protect flag
located in the least significant three bits of the Device
Control register. The programmable expiration takes
place when one or more write protect bits have been set
and one corresponding alarm condition occurs. Bit 3 of
the Device Control register, called RO or Read Only,
defines the functionality of the DS1994 after the expira-
tion has occurred. If this bit is set to 1, the device
becomes read only. If it is cleared, only the ROM con-
tents can be read after expiration. Before expiration the

RO bit has no impact on operation. Setting one or more
of the three write protect bits enables the device as
expiration controller and prevents modification of the
corresponding timer/counter and alarm registers, all
other write protect bits and the RO bit. The OSC bit
becomes write 1 only; i.e., the oscillator can still be
started, but not stopped. If the cycle counter is write pro-
tected also, the Delay SELect bit DSEL cannot be
changed anymore. Write protecting the interval timer
also protects the AUTO/MAN bit and forces the STOP/
START bit to be cleared to 0. In this case, the interval
timer can either run permanently (manual mode) or it
can run in the automatic mode, depending on the setting
of the AUTO/MAN bit.

With exception of the write protect bits, all other bits of
the Device Control register can be set like writing a byte
to any other location using the scratchpad as intermedi-
ate storage. There is no danger of inadvertently setting
a write protect bit. To set the write protect bits, first the
scratchpad must be loaded with the desired new data of
the device control register. Next, the scratchpad must
be verified as usual. Then the Copy Scratchpad com-
mand must be performed three times. After the Copy
Scratchpad command is performed the first time, the AA
bit of the Transfer Status register E/S will be set. For the
next two Copy Scratchpad commands, the AA bit must
also be set; otherwise, the write protect bits still remain
cleared. Each of the three Copy Scratchpad commands
requires a full command cycle, including a Reset Pulse
and ROM command. If it is desired to set more than one
write protect bit, the bits must be set at the same time.
Once a write protect bit is set, it cannot be undone, and
the remaining write protect bits, if not set, cannot be set.
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E.3. Interrupt Signalling and Processing

E.3.a. Alarm Versus Interrupt
If a DS1994 detects an alarm condition, it will automati-
cally set the corresponding alarm flag in the Device Sta-
tus register. The master does not get this information
unless it reads the alarm flags. Doing this generates
permanent communication on the 1–Wire line, puts a
permanent load on the master, and consumes lithium
energy from all addressed devices. If the electrical con-
nection to the devices is poor, data from the Device Sta-
tus Register may not be received correctly. The register
page provides no CRC to detect transmission errors.
Since reading the Device Status Register clears the
alarm flags, a second reading will not give any help and
information may be lost. Thus especially in a touch envi-
ronment the alarm flags do not provide enough security
in signalling alarm conditions.

The interrupt facility, however, makes sure that the mas-
ter is always informed about alarms. Either the master is
informed immediately or with the next Reset Pulse.
Using the Conditional Search command (see section
E.3.e of this chapter), it is possible to identify all inter-
rupting devices without losing any status information.
Bad contacts do not disturb the identification process,
since the interrupt is signalled as long as the Device Sta-
tus register is not read. Even if while reading the Device
Status register the contact should be poor, the master
still knows the device identity. Re–reading the Register
Page allows reconstruction of the type of alarm by com-
parison of counter registers with alarm registers.

E.3.b. Interrupt Types
The DS1994 recognizes two types of interrupts: sponta-
neous interrupts, called type 1, and delayed interrupts,
type 2. A spontaneous interrupt is generated as soon as
the alarm condition occurs. This requires that the mas-
ter allows interrupts to be generated from the 1–Wire
bus. If the application does not allow this, delayed inter-
rupts are still superior to alarms. No matter when the
alarm condition occurs, the information about it will
never inadvertently get lost. The master simply has to
check the status of the data bus after it has released it

from a Reset Pulse. This makes interrupts an important
feature to secure alarm signalling in typical touch
applications.

E.3.c. Interrupt Signaling
Spontaneous interrupts need to be armed by a Reset
Pulse after the master has finished the actual commu-
nication on the 1–Wire line. They require that the data
line is pulled high and that there is no other activity on
the data line. A single falling slope or detaching the
device from the 1–Wire line will disarm this type of inter-
rupt. If an alarm condition occurs while the device is dis-
armed, the interrupt will be signaled at first as a type 2
(regular or special case) interrupt. Spontaneous inter-
rupts are signaled by the DS1994 by pulling the data line
low for 960 to 3840 µs. After this long low pulse, a Pres-
ence Pulse will follow as if the device had received an
ordinary Reset Pulse from the master. This waveform
(Figure 6–6) occurs only once with every spontaneous
interrupt. If the alarm condition occurs just after the mas-
ter has sent a Reset Pulse, i.e., during the high or low
time of the presence pulse, the DS1994 will not assert
its Interrupt Pulse until the Presence Pulse is finished
(see Figure 6–7).

If the DS1994 has no chance to directly signal an inter-
rupt, either because the data line was not pulled high,
communication was in progress, or the interrupt was not
armed, it will extend the next Reset Pulse sent by the
master to a total length of 960 to 3840 µs. If the alarm
condition occurs during the reset low time of the Reset
Pulse, the DS1994 will immediately assert its interrupt
pulse; thus the total low time of the pulse can be
extended up to 4800 µs (see Figure 6–8). If a DS1994
with a not previously signaled alarm is attached to a
probe, it will as usual send a Presence Pulse and wait
for the Reset Pulse sent by the master to extend it and to
subsequently issue a Presence Pulse (see Figure 6–9).
Extended Reset Pulses do not confuse other iButtons
since there is no true maximum time limit for the reset
low time. The only limitation exists with the DS1994; to
detect interrupts, the reset low time must be limited to a
maximum of 960 µs; otherwise, it could mask or conceal
Interrupt Pulses.
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TYPE 1 INTERRUPT  Figure 6–6

RESET PRESENCE
INTERRUPT
960 - 3840 µs PRESENCE

Note:  No communication following 
Presence Pulse., i.e. no falling edge.

Interrupt condition occurs here.

VCC

1–WIRE
BUS

GND

TYPE 1A INTERRUPT (SPECIAL CASE)  Figure 6–7

INTERRUPT
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Interrupt condition occurs during the Presence Pulse, but the interrupt is not generated until the
Presence Pulse is completed.
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TYPE 2 INTERRUPT  Figure 6–8
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TYPE 2 INTERRUPT (SPECIAL CASE) Figure 6–9

PRESENCE

Interrupt condition occurs while the
bus is powered down.
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BUS
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INTERRUPT
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LINE TYPE LEGEND:
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The interrupt signaling discussed so far is valid for the
first opportunity the device has to signal an interrupt. It is
not required for the master to acknowledge an interrupt
immediately. If an interrupt is not acknowledged the
DS1994 will continue signaling the interrupt with every
Reset Pulse. To do so, DS1994 devices of Revision B
will always use the waveform of the Type 2 Interrupt
(Figure 6–8). Devices of Revision C will either use the
waveform of the Type 2 Interrupt (Figure 6–8) or the
waveform of the Type 1A Interrupt (Figure 6–7). The
waveform of the Type 2 Interrupt will be observed after a
communication to a device other than the interrupting
one; after successful communication to the interrupting
device (without acknowledging the interrupt) the wave-
form of the Type 1A Interrupt will be found. If the revision
of a particular DS1994 is not known, it can be deter-
mined by the waveform used for interrupt signaling or by
the information branded on the lid of the MicroCan. The
field RR of Figure 3–2, just above the family code, will
read Bx for Revision B and Cx for Revision C. The char-
acter ”x” represents a 1–digit number that is not related
to the chip inside.

E.3.d. Interrupt Acknowledge
As long as an interrupt has not been acknowledged by
the master, the DS1994 will continue sending interrupt
pulses. This has little impact on the communication in a
network environment if the master waits for the data line

to be high before a command is sent out, but it will slow
down the communication. Therefore, the master should
acknowledge interrupts as soon as possible. This is
done by reading the Device Status Register, address
200H, which automatically clears all alarm flags. The
three least significant bits tell the master which of the
possible alarms has occurred. Comparing the contents
of the corresponding alarm registers with the actual
counter registers’ contents gives information about
when the alarm condition occurred.

E.3.e. Conditional Search
In a multi–drop environment with many and different
types of iButtons on the same data bus, it is time–con-
suming to find the devices that signal the interrupt condi-
tion. The Search ROM command would reveal all
device identifiers. Searching for a certain family code
would reduce the number of search cycles. But in gen-
eral, this method can be tedious. Therefore, the DS1994
supports a special command called Conditional Search,
code ECH, with the non–acknowledged interrupt being
the condition. This command works exactly as the nor-
mal Search ROM, but it will identify only devices with
interrupts that have not yet been acknowledged. The
conditional search algorithm may reveal parts other
than DS1994 which respond to this command. They will
be identified with different family codes and can be dis-
regarded.
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As soon as an interrupting device is identified, the master
should read the Device Status register to acknowledge
the interrupt. Depending on the interrupt source, it might
be necessary to continue reading the other registers of
the Register Page to get information required by the inter-
rupt service routine. If several devices are signalling an
interrupt, the master will issue further Conditional Search
commands to find the other devices until all of them are
serviced. In an environment where the DS1994 operates
as an expiration controller (write protect bits set) and
interrupts are also enabled, the read–only flag RO in the
Device Control register should be set if it is necessary to
clear the interrupt that occurs with the expiration.

F. DS1995 Memory iButton: 16K Bit NV RAM
The DS1995 reflects the complete standard imple-
mentation of the Network and Transport layers and sup-
ports  the iButton file system. It can be regarded as a
larger version of the DS1993. The memory is organized
as 64 pages of 32 bytes. All software development for
the DS1995 can be done using the DS1993 as a test
vehicle. For more details on the DS1995, refer to the
data sheet.

G. DS1996 Memory iButton: 64K Bit NV RAM
The memory of  the DS1996 is organized as 256 pages
of 32 bytes. The DS1996 incorporates all iButton stan-
dards. For more details on the DS1996, refer to the data
sheet.

III. Add–Only iButtons

A. DS1982 Add–Only iButton: 1K–Bit  OTP
EPROM
On the Network Layer the DS1982 is completely in com-
pliance with other iButtons. Due to its different application
area (storage of bytes rather than files) some modifica-
tions are required. The main differences between DS1982
and DS1985/6 are the 8–bit CRC generator instead of a
16–bit version. This 8–bit CRC is calculated with the same
algorithm as is used for the ROM–section of iButtons and
is also output in the true form (not inverted). Instead of the
Extended Read command the DS1982 supports a Read
Data and Generate CRC command (code C3H) that omits
the redirection byte. The flowcharts on Figures 6–10 and
6–11 show details.

For all read commands, a CRC is generated and trans-
mitted by the device before the first byte from either data
or status memory is received by the master. This CRC is
calculated by clearing the CRC–accumulator to 0 and
then shifting in the command followed by the address

information TA1 and TA2. This allows the master to
check the correct transmission of the address before it
continues reading data from memory. For the standard
Read Memory command (code F0H) the device pro-
vides another CRC that is transmitted after the last byte
of data has been read. This CRC is calculated starting
with a cleared CRC accumulator and shifting in every
byte beginning at the first addressed memory location.
In the same way the CRC at the end of the status
memory is calculated. With the Read Data & Generate
CRC command the device also sends a CRC at the end
of each data page. For this CRC the CRC accumulator
is also cleared and then every byte beginning at the first
addressed location of the page is shifted in.

For writing to either the data or status memory the CRC
is calculated differently. For the first byte to be written
the CRC calculation begins with a cleared CRC accu-
mulator; then the command byte, address TA1 and TA2
and the data byte are shifted in. As long as the write
command is not finished by a Reset Pulse, for every
subsequent byte to be written the CRC accumulator is
loaded with the least significant byte of the incremented
address and then the data byte sent by the master is
shifted in.

Since this device has a capacity of only 4 pages of 32
bytes it is not efficient to keep the standard memory map
of status memory for this device. Instead, the status
memory of the DS1982 is reduced to just one page of 8
bytes (Figure 6–12). In analogy to the standard, the low-
est byte of the status memory contains the write protect
bits for the memory. The lowest four bits are used to
hardware–protect the memory pages. Since there are
no write protect bits for the redirection bytes, the upper
four bits of the write protect byte have no function.
Depending on the application, the bitmap of used pages
may be stored in these bits. Byte addresses 1 to 4 con-
tain the redirection bytes, one for each page of memory.
Of the remaining 3 bytes within the status memory page,
the highest one is factory–programmed to 00H. The
other two bytes are not dedicated to a special purpose.

The DS1982 with its capacity of 1K bit targets byte–ori-
ented applications where the serial number is required for
identification and up to 128 memory bytes are useful to
store additional information. With its ability to store data
according to the extended file structure, the DS1982 is a
one–time–programmable counterpart of the DS1992.
Page redirection is handled differently, however, and it
deviates from the iButton Standards on the Transport
layer and in the status memory map.
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MEMORY FUNCTION FLOW CHART DS1982 READ COMMANDS  Figure 6–10
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MEMORY FUNCTION FLOW CHART DS1982 READ COMMANDS  Figure 6–10 (cont’d)
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MEMORY FUNCTION FLOW CHART DS1982 WRITE COMMANDS  Figure 6–11
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STATUS MEMORY MAP OF DS1982 1K BIT ADD–ONLY i Button  Figure 6–12
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B. DS1985 Add–Only iButton: 16K–Bit OTP
EPROM
The DS1985 is the first Add–Only iButton with the full
implementation of the Network and Transport layers
that supports the EPROM–adapted iButton file system.
The memory of the DS1985 is organized as 64 pages of
32 bytes. For details on the logical behavior, refer to
Chapter 5. For further information on the DS1985, refer
to the data sheet.

C. DS1986 Add–Only iButton: 64K–Bit OTP
EPROM
The memory of the DS1986 is organized as 256 pages
of 32 bytes. The DS1986 shows the same logical behav-
ior as the DS1985 except for the memory capacity,
which is four times greater. For more details on the
DS1986, refer to the data sheet.

IV. Other MicroCan Products

This section is dedicated to non–memory products
packaged in MicroCans. These products, like Memory
iButtons, communicate in time slots and use the stan-
dard ROM commands of the Network layer for addres-
sing. Everything else is device–specific. An adapted
command set on the Transport layer supports the spe-
cial features.

DS1920 Temperature iButton
The Temperature iButton is a very accurate and easy–
to–operate temperature sensor. It can be read like a
Memory iButton or wired as a MicroLAN to read the tem-
perature of many locations remotely. As with the
DS1990A and all Add–Only iButtons, the Temperature
iButton does not contain an internal energy source.
Energy is needed only to do temperature conversion or
to write to its nonvolatile EEPROM memory locations.
For this reason, a strong pull–up is required just after the
command for temperature conversion has been sent by
the master or when data is being written to the EEPROM
cells.

The memory map of the DS1920 is comprised of an
8–byte scratchpad with embedded registers for temper-
ature reading in the first two bytes, EEPROM
backed–up temperature alarm registers (TH, TL or user
bytes) in the next two bytes, two dummy bytes and two
registers providing data for temperature interpolation.

All temperature reading and setting of the alarm thresh-
olds is done through the scratchpad. With a memory
map of 8 bytes, a random access addressing mode is
not implemented. Reading the scratchpad always starts
with the temperature register and ends with the inter-
polation register. For data integrity check the DS1920
transmits an 8–bit CRC (”ROM–type”) over the entire
scratchpad after the last byte of the scratchpad has
been read.

The data representation within the DS1920 is very
straightforward. Temperature reading is the two’s com-
plement of the temperature in degrees Celsius. The
temperature increments are 0.5°C.

In addition to the four standard ROM commands, the
DS1920 supports the Conditional Search ROM, com-
mand code ECH. A DS1920 will respond to the condi-
tional search if the temperature alarm registers TH and
TL are loaded with valid temperature values (upper and
lower thresholds) and the latest temperature conver-
sion has revealed a value outside the interval TH to TL.
Since the temperature alarm registers are one byte
each and the most significant bit represents the sign, the
resolution of the temperature alarm is reduced to ±1°C.

The DS1920 is specified for operation over the tempera-
ture range –55°C to +100°C. Within the range of 0°C to
+70°C, the accuracy of temperature reading is ±1 LSB
or ±0.5°C. In the range of +70°C to +85°C, the accuracy
decreases to ±1°C. In the remaining ranges the accu-
racy is typically better than ±2°C.
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V. Solder–Mount Products

In this section devices are discussed that require more
than one connection and therefore do not fit into a Micro-
Can. These devices  support the communication stan-
dards and networking commands of iButtons. On the
Transport layer, the devices may deviate from iButtons.

A.  DS2407 Addressable Switch
The DS2407 (formerly referenced as DS2405A) is an
enhanced version of the DS2405. It works in all applica-
tions of the DS2405 but is easier to use, more flexible
and much faster in achieving specific operations. Fur-
thermore, it is completely in compliance with iButton
standards up to the Network layer and partly in com-
pliance on the Transport Layer.

The DS2407 comprises two PIO–channels (”switches”)
A and B that can be controlled or sensed (either directly or
by use of Conditional Search ROM) through the 1–Wire
bus. In addition, the DS2407 provides 1K–bit of EPROM
data memory and 8 bytes of Status Memory (7 bytes
EPROM, 1 byte SRAM) similar to the DS1982.
Embedded in the Status Memory are user–program-
mable power–on conditions for the PIO–channels,
Conditional Search settings (address 6), and SRAM cells
to override the power–on default values (address 7). The
memory function command set of the DS2407 is identical
to the DS1985 plus a new command for channel access.

The channel access command selects one or both
channels, reads from or writes to the selected chan-
nel(s), or toggles between read and write without having
to reset the device. When reading, a 16–bit CRC gener-
ator can add CRC values to safeguard the data stream,
if desired. Before data is written to or read from a PIO–
channel, the DS2407 transmits a channel info byte indi-
cating the status of each channel (i. e., if the pull down
transistor is conducting or not), the logical level sensed
at each channel and the status of each channel’s activity
latch, a flip flop that is set whenever a change of the log-
ical level at a PIO occurs. Channel A is designed for high
sink currents (minimum 40 mA) and voltages of 12V;
channel B can handle 6V and sink at least 6 mA. There
are several more unique features of the DS2407 that,
due to space limitations, cannot be discussed here.
Please refer to the DS2407 data sheet.

The DS2407 will be available in a 6–pin C–lead surface
mount package as well as in a TO–92 package for
through mount applications. With the 3–lead TO–92
package, however, channel B will not be accessible.

B.  DS2404S–C01 Dual Port Memory Plus Time
This product is a special version of the chip that is inside
the DS1994 Memory Plus Time iButton.   Initially, this
device was developed as a custom part for the iButton
Recorder, but has been authorized for public availability.
To be distinguished from the DS1994, the DS2404S–C01
has the family code 84H.  In addition to this, the 12 most
significant bit of the serialization field are coded 001H,
leaving 28 bits for serialization.  The communication with
the DS2404S–C01 through the 1–Wire port is identical to
the DS1994; all functions of the DS1994 are available.

The second port of the DS2404S–C01 is a 3–Wire serial
interface providing the signals Data, Clock and Reset
for communication speeds up to 2 Mbits/s.  The 3–Wire
interface directly accesses the scratchpad, memory
locations and special registers without requiring a ROM
command to address the device.  For the 3–Wire inter-
face the same command codes and transaction flow-
charts apply as for the 1–Wire interface; the lasered
ROM itself and the commands of the network layer are
not accessible.  The arbitration between ports is done
according to the method first come, first serve.  Housed
in a 16–pin SOIC package, the DS2404S–C01 provides
a separate open drain IRQ pin for interrupt signalling
and a 1 Hz clock output.  Depending on the application
the device can either operate on VCC from 2.8V to 5.5V
with battery backup or on battery only.  The two inter-
faces of the DS2404S–C01 bridge other electronic
equipment to the MicroLAN.

VI. Chapter Summary

Several iButton types have special features that are
designed for a special application (DS1991 MultiKey,
DS1982 1K bit Add–Only iButton) or add timekeeping
functions (DS1994 with its real–time clock, interval
counter, cycle counter, expiration controller, and alarm
generator). Special features require additional com-
mands and thus may reduce the software compatibility
(DS1991, DS1982). The Temperature iButton is another
MicroCan device that can operate in a touch environ-
ment as well as on a hard–wired 1–Wire bus. To sense
and to control the state of nodes using the digital selec-
tion capability of the 1–Wire bus, the Addressable
Switch has been introduced. All of these devices are
electrically compatible in the 1–Wire environment; they
don’t disturb each other.
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CHAPTER 7: i Button FILE STRUCTURE

I. Introduction

Most flexibility is obtained from a travelling data storage
medium if data of different independent applications or
for different purposes can be stored, retrieved and
updated independently.  These requirements describe
well known features of common operating systems and
file structures.  For use with iButton Memories and their
special operating environment, a fully featured file struc-
ture, called “extended file structure” has been devel-
oped.  Together with the extended file structure the so–
called “default data structure” exists.  The default data
structure, as a subset of the extended file structure,
does not allow one to store multiple independent files.
However, it may be sufficient for very simple applica-
tions, or for devices such as the DS1991, which provide
a hardware file system.  For details on the default data
structure please refer to Chapter 10, Validation of
iButton Standards.

This chapter describes the fundamentals of the
extended file structure and gives sufficient information
to generate file structures for Memory iButtons that are
fully compatible with iButton TMEX.  The DS0621 TMEX
Professional Developer’s Kit contains the complete def-
inition of the extended file structure which includes pro-
visions for subdirectories, file attributes, passwords,
date stamps, owner identification, etc.

In order to keep compatibility with DOS files on a PC and
to save time writing application–specific software,
TMEX is available from Dallas Semiconductor for IBM–
compatible PCs as the DS0621 TMEX Professional
Developer’s Kit.  The DS0621 is a software package
and requires hardware components of the DS9092K
iButton Starter Kit for operation. The DS0621 also
includes all details of iButton Memory data structure,
nested subdirectories, attributes and guidelines for
backward–compatibility, as well as utilities that imple-
ment file–oriented iButton Memory functions, including
device formatting.

II. Data Organization

As indicated in Chapter 5, ”Logical Standards,” the data
organization of iButtons is very similar to floppy disks. A
sector of a floppy roughly corresponds to a page of an
iButton. The directory tells which files are stored, where
the data is found in the device, and how many pages it

occupies. In this way information can be randomly
accessed for quick response.

The basic structure of iButton data files is shown in Fig-
ure 7–1. Each page of the file begins with a length byte,
contains a continuation pointer, and ends with an
inverted CRC16 check. The continuation pointer is the
page address where the file is continued. A continuation
pointer 0 marks the last page of a file. The length byte
indicates how many valid bytes a page contains, not
counting the length byte and the CRC. The CRC cal-
culation, however, also includes the length byte. The
CRC accumulator is initialized by setting it equal to the
iButton page number.  Every byte of a page is trans-
mitted least significant bit first. The length byte is the first
to be transmitted. Of the two CRC bytes, the least signif-
icant will be sent first.

The basic rules of the data file also apply to the directory
file. Figure 7–2 shows details. Instead of data, the direc-
tory contains management information and file entries.
The control field of seven bytes has the same length as
a file entry. The bitmap supports the operating system in
allocation of memory space for writing files. In the bit-
map of NV RAM–type iButtons, used pages are marked
with a 1, empty pages with a 0. The least significant bit
corresponds to page 0. The most significant bit of the
device flags must be set to 1. All other device flags must
be 0. The device directory including control field is
created during the process of formatting the device.

File entries consist of the 4–byte file name, one–byte file
extension, the start page address where the file begins,
and the number of pages the file occupies (Figure 7–3).
File names must consist of ASCII characters only, as
with DOS. The most significant bit of the file extension is
set if the file is read–only. The extension 255 (all bits set)
is reserved for the operating system. Continuation
pages of the directory don’t need a control field; this
space is available to store another file entry.

The extended file structure is also valid for Add–Only
iButtons. Since updating a bitmap inside the directory
page would result in a non–matching CRC, the bitmap
becomes part of the status memory. Since it is only pos-
sible to alter an EPROM–bit from 1 to 0, a used page of
an Add–Only iButton is marked with a 0 (instead of a 1
as it is with NV RAM iButtons).

Add–Only iButtons that are programmed once are
read–compatible to NV RAM type iButtons, as long as
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no further data is added. By design, Add–Only iButtons
provide read compatibility to NV RAM iButtons.  Read-
ing the DS1982, however, requires skipping or discard-
ing the first eight data bits received. These bits repre-

sent an 8–bit CRC over the read command byte and the
specified target address. For full documentation of the
file structure adapted to Add–Only iButtons, please
refer to the DS0621 TMEX Kit.

STRUCTURE OF A PAGE OF A DATA FILE Figure 7–1

Length
Binary 1 . . . 29

Data
ASCII or Binary

Cont.– Pointer
Binary

CRC16
Binary

(Unused)

1 byte 0 to 28 bytes 1 byte 2 bytes 28 to 0 bytes

STRUCTURE OF THE FIRST PAGE OF THE DEVICE DIRECTORY Figure 7–2

Length
Binary 8 . . . 29

Control
Field

File Entries
ASCII & Binary

Cont.– Pointer
Binary

CRC16
Binary

(Unused)

1 byte 7 bytes 0 to 21 bytes 1 byte 2 bytes 21 to 0 bytes

Directory Mark
“AA”

Attributes
Binary

Device Flags
10000000

Bitmap of
Used Pages

2 bytes binary

Do Not Change!
2 bytes binary

1 byte 1 byte 1 byte LS/MS–byte “00”  “00”

STRUCTURE OF A FILE ENTRY Figure 7–3

File Name
ASCII, Blank Filled,

Left Justified

File Extension
Binary

Start Page
Binary

Number of Pages
Binary

4 bytes 1 byte 1 byte 1 byte
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III. Features

The extended file structure is carefully designed to pro-
vide high speed and best performance in a touch envi-
ronment. Every memory page of an NV RAM type
iButton can be read, CRC–checked or written without
the need to access other pages. If a file is modified, only
the affected pages need to be rewritten. Pages of a file
need not be contiguous; files can be extended by rede-
fining continuation pointers. Files can be grouped into
nested subdirectories. Attributes defined for a directory
apply for all files within it. The extended file structure
comprehends future types of iButton Memories with up
to 256 pages with a maximum of 256 bytes per page.

IV. Utilities

The TMEX functions referring to the Extended File
Structure of iButton Memories are implemented for the
MS–DOS environment as interrupt calls in the same
way as the Interrupt–Level 1–Wire I/O drivers. For MS–
Windows, the TMEX functions are provided in a
Dynamic Link Library (DLL). (Details are in Chapter 9,
”Systems Integration Software.”) In addition to the inter-
rupts and DLLs, a set of utility programs has been devel-
oped that can be executed to perform standard file–ori-
ented data transfers to and from iButton Memories. The

utility programs TFormat, TType, TCopy, TDir, TAttrib,
and TDel perform for iButton Memories the same opera-
tions as the corresponding DOS utilities for disk files.
TView is a special utility program that allows easy
inspection of the contents of all the various data files on
an iButton Memory, and TOpt is a utility program that will
perform diagnostics on the file structure and defragment
the data on a Memory iButton in the same manner as a
disk optimizer program for hard disks. Defragmentation
reorganizes the pages of each file to make them contig-
uous. This results in maximum speed for reading data
and directories. The TChk utility performs diagnostic
tests on the file structure and displays a report on the
integrity of the data, along with any abnormal conditions
encountered. All these utilities including documentation
are shipped together with TMEX as part of the DS0621
Professional Developer’s Kit.

V. Chapter Summary

The extended file structure is very similar to that of
floppy disks. It is optimized for data integrity and speed
in a touch environment. This chapter provides basic
information about the file structure. Complete documen-
tation is available in the DS0621 Professional Develop-
er’s Kit, for use with the DS9092K iButton Starter Kit.
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VCC

  1
  2

iButton Probe

CR1

5.6V

R1

P0.0

1.0 to 10kΩ*

* Value selected on the basis of wire capacitance, contact resistance and leakage currents.
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CHAPTER 8: SYSTEMS INTEGRATION
HARDWARE

I. Introduction

This chapter describes a range of hardware interfaces
for communicating with iButtons from a variety of differ-
ent platforms, ranging from microcontrollers and micro-
processors to PCs and workstations. Each hardware
interface is controlled by a specific set of software or
firmware drivers to provide the basic I/O functions called
TouchReset, TouchByte, and TouchBit.

II. ESD Protection

Since the 1–Wire bus directly connects peripheral
devices to components within a computer, it is neces-
sary to provide circuits that protect against damage by
electrostatic discharge (ESD). Figure 8–1 shows an
example of ESD protection circuitry applicable for bi–
directional ports and for ports with programmable data
direction. A protection circuit for fixed–direction ports is
shown in Figure 8–3.

Figure 8–1 shows the minimum protection circuitry. The
Zener diode CR1 limits positive spikes to a harmless
level and clamps negative spikes one diode drop below
the ground level. R1 is the pull–up resistor required for
1–Wire operation; it is usually located close to a port pin
of a microcontroller. CR1 is located as close to the
1–Wire probe as possible.

ESD is extensively covered in technical literature. More
elaborate protection circuits can provide even greater
tolerance to electrostatic discharge.

III. IBM–Compatible PCs

A. DS9097 COM Port Adaptor
The DS9097 COM Port Adapter provides a simple
iButton reader for PCs and other computers having an
RS232C serial port capable of transmitting and receiv-
ing at 115,200 bits per second. The DS9097 is a simple,
low–cost passive adapter circuit that performs RS232C
level conversion, allowing an iButton Probe to be con-
nected to a PC so that an iButton can be read and writ-
ten. Due to its passive operation, this adapter is not
completely in compliance with the RS232C standard,
but generally it works well with IBM–compatible PCs.

The DS9097 is well suited to read all iButton products, to
write SRAM devices and to support temperature mea-
surements with one Temperature iButton at a time. For
writing Add–Only iButtons the DS9097E, an upgraded
version of the DS9097 is available. Due to the limited
available energy at the COM port, either a special pro-
gramming algorithm (a bit at a time) or an external DC
supply may be required.

To operate with the DS9097, the serial port must support
a data transmission rate of 115,200 bits per second in
order to form the 1–Wire time slots correctly, even
though the actual rate of data transmission to the
iButton is 14,400 bits/second (somewhat below its full
data rate of 16,400 bits/second). Nearly all PCs support
the required bit rate and are fully compatible with the
DS9097. For details, please refer to the brochure ”50
Ways to Touch Memory,” which is included in the
DS9092K iButton Starter Kit.

BIDIRECTIONAL PORT WITH ESD–PROTECTION Figure 8–1
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B. Add–In Cards
Add–In cards for PCs interfacing up to eight 1–Wire
lines are commercially available. The upgrade for Add–
Only iButtons and the Temperature iButton is in prepa-
ration. For addresses of manufacturers, please contact
Dallas Semiconductor.

IV. Interfaces To Other Computers And
Operating Systems

For computers other than IBM PCs, a variety of possible
interfaces may exist to allow iButton communication.
Some of these hardware interfaces are discussed
below.  A method of forming a 1–Wire bus from two fixed
direction ports is explained in section V, later in this
chapter.

A. 8250 UART For Serial Communication
If a computer utilizes an 8250 UART or equivalent to
provide RS232C serial communication, allows a bit rate
of 115,200 bps, and allows user code or installed device
drivers to communicate directly with the registers of the
8250, then it will provide iButton communication in the
same manner as an IBM PC with a DS9097 COM Port
Adaptor. The software techniques required to transmit
and receive iButton data on the 1–Wire bus are identical
to those used on an IBM PC, and can be coded entirely
in a high–level language since the 8250 UART provides
the critical timing for the 1–Wire bus. For programming
Add–Only iButtons and for operation of the Temperature
iButton, additional hardware and software is required to
provide the 12V programming pulse and the strong 5V
pull–up, respectively.  An application note will be avail-
able from Dallas Semiconductor.

B. iButton Peripheral Control Card
An add–in card can be designed for any given computer
to provide the necessary I/O capabilities to operate the
1–Wire bus. This add–in peripheral might be as simple
as a general–purpose parallel input/output (PIO) card,
where the 1–Wire timing is provided in software. Alter-
natively, a controller card can be designed specifically to
provide hardware driving and timing for the 1–Wire bus
including the requirements for Add–Only iButtons and
the Temperature iButton.

C. Phantom Bus Interface
The DS1206 Phantom Serial Interface (Figure 8–2)
allows a low–cost connection to a parallel data bus such

as that used in IBM PCs and other computers. The
Phantom is activated by a coded sequence of address
accesses. It then operates as a data latch which allows
the software to read or write the 1–Wire bus with the cor-
rect timing to send and receive data. After the commu-
nication session is completed, the Phantom can be
deactivated by reference to a specific address, causing
it to disappear from the parallel data bus until it is acti-
vated again.

This simple interface can be used to share memory
address space with another memory–mapped device.
Because of its principle of operation, the Phantom Bus
Interface is not capable of supporting all types of inter-
rupts generated by iButtons.  Alarms or interrupts can
be recognized only when the computer polls the 1–Wire
bus via the Phantom Bus Interface. The phantom inter-
face is not capable of supporting the requirements of
Add–Only iButtons and the Temperature iButton without
additional hardware.

D. RS232C iButton Terminal Interface
For interfacing to larger computers such as worksta-
tions and central data processing systems, a standard
RS232 communication channel supported by the oper-
ating system can be employed. Protocol and level con-
version is provided by a simple add–on device, called
iButton Terminal Interface. The iButton Terminal Inter-
face is a microprocessor–controlled circuit that allows
the data read from an iButton to be injected into an
RS232C data link between a central computer and a
remotely located ”dumb terminal.” Conversely, data can
be transmitted from the remote computer, captured by
iButton Terminal Interface, and written into an
iButton Memory. Besides its normal function as a bi–
directional buffer between computer and terminal, the
iButton Terminal Interface also continuously polls for
and reads CRC16 validated data from an iButton
Memory. If the data is valid, it is injected into the RS232C
serial data stream to the computer as if it had been typed
on the remote terminal. In the reverse direction, spe-
cially coded data received from the central computer is
stored in the iButton Terminal Interface to be written into
the next Memory iButton that comes into contact with
the probe. More details about this can be found in ”50
Ways to Touch Memory,” available from Dallas Semi-
conductor. The iButton Terminal Interface can be
upgraded to comply with the requirements of Add–Only
iButtons and the Temperature iButton.
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PHANTOM 1–WIRE INTERFACE Figure 8–2
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V. Microcontroller Interfaces

The standard hardware interface between the iButton
Probe and a microcontroller is a direct connection
between the data wire of the probe and an I/O port pin of
the microcontroller. In the following sections, the gen-
eral port pin hardware interfacing issues are discussed.
For programming Add–Only iButtons and operation of
the Temperature iButton, two more port pins are
required to control the 12V supply and the strong 5V
pull–up, respectively. Special care must be taken to
keep the high programming voltage isolated from the
I/O pins of the microcontroller and other 5V devices.

A. General Interfacing Considerations
There are three common implementations of I/O on port
pins of a microcontroller: bi–directional, programmable
data direction, and fixed direction. Some microcontrol-
lers use one type of I/O exclusively, and others mix two
or more of the above types in the same device. The
interfacing techniques for communicating on the 1–Wire
bus differ slightly for the three different types, as
described further below.

B. Bi–Directional Port
A bi–directional port pin is pulled strongly to ground
when a zero is written to it, and is either floated (high
impedance) or weakly pulled up when written with a
one. When the port pin is read, it returns a 1 if the pin is at
high voltage (VCC) and a 0 if the port pin is low (ground).
To input on such a port pin, the pin must have previously
been written to a 1 so that the external circuit drives a
high impedance input. Bi–directional port pins are
ideally suited for communicating with iButtons on a
1–Wire bus. The port pin is written with a 0 to drive the
1–Wire bus low, and is written with a 1 to allow the
1–Wire bus to be pulled high by the internal or external
pull–up resistor. The data on the 1–Wire bus is sampled
simply by reading the port pin. All data transfer to and
from an iButton is therefore accomplished by writing to
or reading from a single pin.

C. Programmable Data Direction
A port pin with programmable data direction is either a
low impedance output or a high impedance input,

depending on the state of the corresponding bit in the
data direction register for that port. This type of port pin
can be configured to drive a 1–Wire bus as follows:

– Write a 0 to the port pin initially, so that it will be
driven low when it is in the low impedance output
state. (This step need be done only once, when the
micro is first powered up.)

– Output to the 1–Wire bus by writing data to the data
direction bit corresponding to the chosen port pin.
(This data must be complemented prior to output
if a 1 on the data direction bit signifies output.)

– Input from the 1–Wire bus by reading data from the
chosen port pin.

Note that the method described above has the effect of
converting a programmable data direction port pin into a
bi–directional port pin (with a low impedance, low volt-
age state and a high impedance, high voltage state).
The only difference in the firmware is that the instruc-
tions to input from the 1–Wire bus reference the desired
port bit itself, whereas the instructions to output to the
1–Wire bus reference the corresponding data direction
bit.

D. Fixed Direction
A fixed direction port pin is one which cannot be con-
verted between output and input states under program
control. (Included in this category is a port pin which
operates as an input until it is used for the first time as an
output. It then becomes an output and remains an out-
put until the micro receives a hardware reset.) In order to
construct a 1–Wire bus driver from fixed direction port
pins, it is necessary to combine an output port pin with
an input port pin as shown in Figure 8–3. Q1 inverts the
logical level of the output port and converts it into an
open drain output. Data is written to the 1–Wire bus by
writing complement data to the output port pin. Reading
the 1–Wire bus is accomplished by an input command
referring to the input port pin.
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FIXED DIRECTION PORT Figure 8–3

VCC

R1

P0.0   1
  2

Q1

2N7000
P0.1

CR1

5.6V

4.7kΩ
iButton PROBE

VI. Microprocessor Interfaces

Microprocessor interfaces take a variety of forms.
iButtons can interface to a microprocessor by way of a
standard peripheral adaptor chip. Any system that has a
peripheral I/O (PIO) or serial I/O (SIO) can accommo-
date the 1–Wire protocol. Popular PIO’s such as the
8255 or 8256 have software–programmable I/O pins
(ports). The 1–Wire interface requires only a single
bidirectional port pin with a 5 kΩ pull–up resistor tied
from Data to VCC. For programming Add–Only iButtons
and operation of the Temperature iButton, two more
logic signals are required to control the 12V supply and
the strong 5V pull–up, respectively. Special care must
be taken to keep the high programming voltage isolated
from the microprocessor and other logic circuits.

Two configurations for the 1–Wire bus are possible:
either one port pin is dedicated to iButtons or iButtons
share a port pin with another device, e.g., a keypad.

VII. Chapter Summary

This chapter presents hardware considerations for
communication with iButtons from a variety of host pro-
cessors, including IBM PCs and compatibles, worksta-
tions, microcontrollers and microprocessors. The sim-
plicity of the 1–Wire interface allows a variety of
effective communication interfaces to be developed
easily for any type of host computer. For further details
on hardware and software for programming Add–Only
iButtons and operation of the Temperature iButton,
please contact Dallas Semiconductor.
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CHAPTER 9: SYSTEMS INTEGRATION
SOFTWARE

I. Introduction

This chapter describes a range of software standards
and implementations for communicating with iButtons
from a variety of different platforms, ranging from micro-
controllers to PCs to mainframes. In developing these
modules, attention has been given to achieving a hierar-
chical structure that promotes maximum flexibility and
compatibility with existing and future iButton products.
The structures and contents of these modules are
described in detail in the sections that follow.

II. IBM–Compatible PC Implementations

This section describes integration software designed
for the IBM–compatible PC. This category includes not
only desktop and laptop PCs but also hand–held MS–
DOS data collectors and embedded DOS controllers. A
variety of different software platforms for iButton I/O
have been developed to satisfy the diverse needs of
software developers and system integrators working in
the PC and MS–DOS environments. iButtonTMEX is
available from Dallas Semiconductor as part number
DS0621.  Subsection II of this chapter gives a detailed
description of TMEX and other PC–compatible plat-
forms.

The basic design of iButton TMEX is patterned after the
International Standards Organization (ISO) reference
model of Open System Interconnection (OSI), which
specifies a layered protocol having up to seven layers,
denoted as Physical, Link, Network, Transport, Ses-
sion, Presentation, and Application. According to this
model, the electrical and timing requirements of
iButtons and the characteristics of the 1–Wire bus com-
prise the Physical layer. The software functions Touch-
Reset, TouchByte, and TouchBit correspond in this
model with the Link layer, which also includes hardware
initialization and fault detection facilities. The multidrop
access system functions First, Next, Access, etc., that
support selection of individual network nodes corre-
spond to the Network layer. The software that transfers
NV RAM data to and from individual network nodes cor-
responds to the Transport layer. In multi–user or multi–
tasking environments such as Microsoft Windows, a
Session layer effectively manages sharing of the

1–Wire bus among multiple instances (simultaneous
invocations) of iButton application programs. The Pre-
sentation layer provides a file structure that allows
iButton data to be organized into independent files and
randomly accessed (as with a diskette). The Application
layer represents the final application program designed
by the software developer.

The Physical layer supported explicitly by this software
is the DS9097 COM Port Adapter, which connects to the
RS232C serial port of the PC and adapts the RS232C
signal levels for communication on the 1–Wire bus. The
DS9097 works correctly with nearly all PCs, and the
RS232C serial port of the PC provides the critical timing
required by the 1–Wire bus, so that programming with
the DS9097 adapter is time–independent. The higher
layers of the protocol (above the link layer) support any
possible implementation of the Physical layer.

The description given in the subsequent sections II. A,
B, C applies to TMEX Revision 1.10, which requires the
DS9097 COM–port adapter and is limited to reading
and writing SRAM based iButtons with data densities of
up to 4K–bits and reading the DS1982. TMEX 2.00, a
newer version of TMEX, also supports reading and writ-
ing high–density SRAM and EPROM based devices.
The DS9097 COM–Port adapter will be sufficient for
reading and writing SRAM–based devices and reading
EPROM iButtons. For writing EPROM–based iButtons,
the DS9097E enhanced COM–port adapter is required.
TMEX 2.00 also supports 1–Wire communication
through the parallel port using the DS1410D adapter.
Since the parallel port operates on 5–Volt logic levels, it
is not suited for writing EPROM–based devices. Due to
space limitations a full description of TMEX 2.00 cannot
be given in the Book of DS19xx iButton Standards. A
short summary of the new functions, however, is found
at the end of this chapter.

A. Device drivers for MS–DOS
For the DOS programming environment, the software
layers (Link, Network, etc.) are provided as interrupt–
level I/O drivers. This is accomplished by use of Termi-
nate and Stay Resident (TSR) programs to install the
interrupt handlers in system RAM. (Any or all of these
drivers could also be installed by encoding them in the
BIOS ROM or the control ROM of an add–in interface
card designed to support iButton I/O.)
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A.1.  Advantages of Interrupt–Level Device
Drivers
For DOS programmers, the use of interrupt–level
device drivers to support iButton communication offers
several advantages over alternative modes of support.
Some of the advantages of interrupt–level I/O calling in
the DOS environment are listed below:

A.1.a.  Hardware Independence
When the iButton I/O functions are called as system
interrupts, the hardware specific interface to the 1–Wire
data bus is separated from the software that uses it. This
gives the hardware designer the maximum latitude in
selecting the most suitable hardware interface to
iButtons for a particular PC or embedded MS–DOS con-
troller. (In some instances, a ”spare” I/O pin may be
available on a PIO which can be adapted easily to serve
as the 1–Wire bus driver. In this case the hardware
design task is minimal, and the firmware to control the
1–Wire bus can be incorporated into the BIOS ROM.)
The software that invokes the system interrupts oper-
ates completely independently of the particular hard-
ware implementation.

A.1.b. Interchangeability
An additional advantage is that the user of the software
can substitute a different hardware interface simply by
overriding the existing iButton I/O interrupt service of the
Link layer with a TSR containing a different set of hard-
ware drivers. This could be used to give the software
user his choice of iButton I/O technologies and to allow
him to switch iButton readers simply by installing differ-
ent interrupt control procedures. Examples of possible
alternatives to the DS9097 COM port adapter include
interfaces through a game control port, an LPT port, or a
direct interface to the PC bus with the DS1206 Phantom
Bus Interface.

A.1.c. Add–In Card Compatibility
The interrupt installation code and interrupt support
firmware can be supplied in the ROM of an add–in card
that provides iButton I/O capabilities. In this way, both
the hardware and firmware support for iButton I/O can

be added simply by inserting the card in an expansion
slot of the PC. This support for iButton interface cards
allows an easy upgrade path as better driver circuits are
devised to support long transmission paths, localized
signaling (LED or beeper in iButton) and other features.

A.1.d. Convenient Linkage to High Level
Languages
Most high–level languages support the means to make
system interrupt calls. These interrupt calls are inde-
pendent of procedure calling conventions, memory
model size, segment naming rules, and other issues
that complicate mixed–language programming. (In the
few instances of high–level languages that support
assembly language linkage but not direct interrupt call-
ing, it is generally possible to construct short assembly
language procedures which make the required interrupt
calls and pass the results through to the calling pro-
gram.)

A.2. Specification of the Interrupt Level
Interface
The text below provides the specification of the inter-
rupt–level  hardware–independent interface to the
1–Wire bus used with Dallas Semiconductor iButton
products. According to this specification, all iButton
device drivers, procedure libraries, and application pro-
grams can communicate on the 1–Wire bus by invoking
a software interrupt, in the same manner as other I/O
devices supported by BIOS. The interface consists of
an interrupt vector, designated below as the Dallas
One–Wire (DOW) Interrupt. (The default interrupt–type
for this vector is 61 Hex.) The DOW Interrupt is a soft-
ware interrupt which can be called on to perform polled
data I/O with any Dallas Semiconductor 1–Wire prod-
uct.

The file management functions for iButton data files are
provided by a second interrupt vector, designated below
as the TMEX Interrupt. (The default interrupt–type for
this vector is 63H.) The TMEX Interrupt is a software
interrupt which provides the file control and I/O functions
for reading and writing iButton data files.
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A.2.a. The DOW Interrupt (Link, Network and Transport Layers)

The DOW Interrupt is installed by means of two separate TSRs, named BASFUN and EXTFUN. BASFUN installs the
Basic Functions associated with the Link Layer, and EXTFUN installs the Extended functions associated with the
Network and Transport Layers.

BASFUN provides the basic functions of reset, bit and byte I/O, and hardware fault detection for the DS9097 COM
Port Adapter. It must always be installed whenever iButton TMEX is to be used. (To use a different hardware interface
to the 1–Wire bus, a new TSR must be written to provide the same basic functions for the new interface.)  BASFUN will
try to install itself on interrupt 61H.  If that interrupt is already used, then another interrupt 60H through 66H must be
provided on the command line.  For example, installing BASFUN on interrupt 65H could be done by the following:
BASFUN 65

EXTFUN provides the network control functions that allow a program to identify and communicate separately with
each iButton on the 1–Wire bus. It also provides Transport functions that read and write low–level packets to iButtons.
EXTFUN is hardware independent, since it uses the functions provided by BASFUN to communicate with the 1–Wire
bus.  With no command line parameter, EXTFUN will attempt to search through interrupts 60H to 66H and layer itself
on the first BASFUN type interrupt it finds.  EXTFUN can be forced to use a particular BASFUN type interrupt by pro-
viding it on the command line.  For example, if there are BASFUN interrupts on 60H and 64H, and the 64H interrupt is
desired, then EXTFUN must be invoked as follows:  EXTFUN 64

(1) Structure of the DOW Interrupt

The DOW Interrupt contains a vector to an interrupt service routine having the following structure:

(a) Field #1
This field contains a five byte far jump to the main entry point of the service routine (field #4). The contents
of the field are:

i. EA Hex (The one byte far jump instruction.)

ii. Two byte offset address of field #4.

iii. Two byte segment address of field #4.

(b) Field #2
This field consists of one byte specifying the length of the ID string which follows in field #3.

(c) Field #3
This field contains the body of the ID string. The string must begin with the ASCII characters ”DOW”,
followed immediately by an ASCII character in the range ”0”–”9” or ”A”–”E” which specifies in hexadeci-
mal the number of the highest numbered function code supported by the interface excluding the CLOSE
function. (Function codes are described in section (2) below.) Additional text may optionally be included
in the ID string to specify version number, type of 1–Wire interface, etc. However, only the first four char-
acters are required to be present.

(d) Field #4
Actual interrupt service executable code. (The placement of the code at this offset from the base of the
structure is optional, since the far jump of field #1 allows placement of this field number anywhere within
the range of the far jump.)

The purpose of the above structure is to make it possible for the calling program to determine whether the interrupt is
supported before invoking the interrupt. (If the interrupt were not supported, invoking it could cause an error that would
require the computer to be rebooted.) To determine that the interrupt is supported, the calling program reads the inter-
rupt vector and uses it as a pointer to address the structure described above and find the string beginning with the
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characters ”DOW”. The calling program can also read the following character to determine the highest level of support
offered by the interrupt service. If the characters ”DOW” are successfully found, then it is safe to invoke the interrupt.

An additional purpose of this structure is to make possible a search of all interrupts to determine which interrupt has
been selected for the iButton I/O drivers. This search will be needed when the default interrupt–type 61 hex cannot be
used because of conflict with an existing interrupt. (In this case, other interrupt–types in the range 60 – 66 hex may be
used instead.)

(2) Functions provided by the DOW Interrupt

The DOW Interrupt is invoked with a function code in the AH register to specify the operation to be performed,
and any required output parameter in the AL register. The interrupt returns with the carry bit cleared if the
operation was allowed and set otherwise. If the carry bit is set, then an error code is returned in the AL register
to indicate the reason that the function was not performed. The error code is as follows:

Physical, Link, and Network Layer Errors
1 => Specified 1–Wire port has not been initialized with a call to the Setup function.
2 => Specified 1–Wire port nonexistent.
3 => Function not supported.

Transport Layer Errors
4 => Error reading or writing a packet.
5 => Packet larger than provided buffer.
6 => Not enough room for packet on device.
7 => Device not found.
8 => Block transfer too long.
9 => Wrong type of device for this function.

If the carry bit is cleared, then the input parameter (result of the function call) is returned in the AL register.
Additional information may be returned in other registers, as described in further detail below.

The function code is constructed by placing the number of the desired 1–Wire port (n) in the most significant
nibble of AH, and the number of the desired function in the least significant nibble. This allows any of 16 pos-
sible functions to be performed on any of 16 separate 1–Wire ports. The functions provided may be classified
as basic functions, extended functions, or interrupt control functions as described below:

(a) Basic Functions Provided by BASFUN (Link Layer)
The basic functions described in this section are essential functions which must always be provided in
any implementation of the interrupt service. These functions are complete in that there are no other
essential functions, and they are universal in the sense that they can communicate with any present or
future iButton device that follows the Dallas Semiconductor 1–Wire communication protocol.

i. SETUP:  The SETUP function must be called before any other functions will work. It is intended to be
called once at the beginning of a communication session to initialize the 1–Wire port and verify the
physical integrity of the 1–Wire bus.  Note that execution of this function will reset all the parts on the
specified 1–Wire bus.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 00 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL has 00 hex if the 1–Wire is

shorted and 01 otherwise.
– There may be diagnostic results in DX (see text following this function list).
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ii. TOUCHRESET:  The TOUCHRESET function transmits the 1–Wire Reset signal to the specified
1–Wire bus and listens for the Presence signal returned by one or more 1–Wire parts present on the
bus.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 01 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL has 01 hex if a Presence

indicator was detected and 00 hex otherwise.
– There may be diagnostic results in DX (see text following this function list).

iii. TOUCHBYTE:  The TOUCHBYTE function transmits a byte least significant bit first to the 1–Wire bus
and returns the byte received concurrently from the bus.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 02 hex.
– Byte to transmit in AL.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL contains the byte received

from the 1–Wire bus.
– There may be diagnostic results in DX (see text following this function list).

iv. TOUCHBIT:  The TOUCHBIT function transmits a bit to the 1–Wire bus and returns the bit received
concurrently from the bus.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 03 hex.
– LSB of AL has the bit to transmit.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then the LSB of AL contains the bit

received from the 1–Wire bus.
– There may be diagnostic results in DX (see text following this function list).

v. CLOSE:  The CLOSE is the inverse of the SETUP function. When the 1–Wire port is no longer
needed for I/O operations, this function can be called to power–down or otherwise release resources
that are used by the 1–Wire port. Battery conservation in hand–held and laptop units is thus facili-
tated. It is intended that this function will be called only once at the end of a 1–Wire communication
session. Note that SETUP and CLOSE are potentially time–consuming operations since power cycl-
ing of circuitry might be involved.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0F hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.
– There may be diagnostic results in DX (see text following this function list).



081297 99/151

99

Any (or all) of the basic functions can perform optional diagnostics on the 1–Wire port. Upon return from
the interrupt service, register DH can be examined to determine which tests (if any) were made. If DH
contains a non–zero value then DL will contain test results. A value of zero in DH indicates that no tests
were performed. If these optional diagnostic tests are implemented then the format of the results is as
follows:

Register DH bits indicate which test(s) were performed. A bit is set for each test performed.
Bit 0: Test for short to ground (1–Wire stuck low).
Bit 1: Test for short to VCC (1–Wire stuck high).
Bit 2: Test for Alarm Interrupt.
Bits 3–7: Reserved for future expansion.

Register DL bits contain the results of tests indicated by DH. A bit is set for each tested condition that was
detected.
Bit 0: Fail ground short test (1–Wire is shorted).
Bit 1: Fail VCC short test (1–Wire is shorted).
Bit 2: Alarm Interrupt condition was detected.
Bits 3–7: Reserved for future expansion.

A special case exists where the 1–Wire interface hardware is not able to explicitly detect the polarity of a
short (all that is known is that the interface is somehow non– compliant). In this case the function perform-
ing the test will set both bits 0 and 1 of register DH to indicate that a test for shorts was performed and if an
error is detected both bits 0 and 1 of register DL will be set. The nature of the test should then be clear to
the calling routine since normally only one of those bits in DL would be set after any given call to the func-
tion.

Please note that the dynamic nature of iButton contact with the 1–Wire bus will occasionally cause some
of the above conditions to be detected. The conditions actually occur for brief periods in normal opera-
tion. Only a persistent condition should be interpreted as indicating a hardware fault.

(b) Extended Functions Provided by EXTFUN (Network and Transport Layer)
The extended functions described in this section are provided to support the multidrop capability of the 1–
Wire protocol, allowing the calling program to locate and individually communicate with one of many
iButton devices connected in parallel on the 1–Wire bus. The availability of extended functions may be
determined either by checking the highest implemented function number that follows the characters
”DOW” or by calling the desired extended function and checking the carry flag on return.

i. FIRST:  The FIRST function transmits a TouchReset signal and returns false if no Presence signal is
detected.  If a Presence signal is detected, it executes the ROM search algorithm to find the first ROM
data pattern on the 1–Wire bus.  The ROM data pattern that was found is stored in an internal 8–byte
buffer.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 04 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set, then AL contains the error code.  If carry is not set, then AL contains a 00 hex if no

Presence signal was detected and 01 if a valid ROM was read and placed in the internal 8–byte
buffer.

– There may be diagnostic results in DX (see text prior to this function list).
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ii. NEXT:  The NEXT function transmits a TouchReset signal and returns false if no Presence signal is
detected.  If a Presence signal is detected, it executes the ROM search algorithm to find the next
ROM data pattern on the 1–Wire bus.  The ROM data pattern that was found is stored in an internal
8–byte buffer.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 05 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL contains a 00 hex if no

Presence signal was detected and 01 if a valid ROM was read and placed in the internal 8–byte
buffer.

– There may be diagnostic results in DX (see text prior to this function list).

iii. ACCESS:  The ACCESS function transmits a TouchReset signal and returns false if no Presence
signal is detected.  If a Presence signal is detected, it accesses the device whose ROM code is in the
internal 8–byte buffer.  The access readies the iButton to accept memory function commands such
as read scratchpad.  There are three types of access.  The first and default type uses the Match ROM
command to select the device.  This method has the advantage of being fast but the disadvantage of
not knowing if the device was on the 1–Wire or not.  The second and third type use the Search ROM
command to access and verify that the device is on the 1–Wire.  The disadvantage of these two
’strong’ access commands is that they are slower than the first type.  The third type differs from the
second in that the device is only accessed if it is alarming.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 06 hex.
– AL contains 00 hex for the default access, F0 hex for a StrongAccess and EC hex for a

StrongAlarmAccess.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL contains a 00 hex if no

Presence signal was detected and 01 if the access was successful.
– There may be diagnostic results in DX (see text prior to this function list).

iv. ROMDATA:  The ROMDATA function provides the means for the calling program to read or write data
in the internal 8–byte buffer by returning a far pointer to the buffer.  The buffer is arranged least signifi-
cant byte first.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 07 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.
– ES:BX is a far pointer (Segment:Offset) to the 8–byte internal ROM buffer.
– There may be diagnostic results in DX (see text prior to this function list).
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v. FIRSTALARM:  The FIRSTALARM function transmits a TouchReset signal and returns false if no
alarming Presence signal is detected.  If an alarming Presence signal is detected, it executes the
ROM search algorithm to find the first alarming ROM data pattern on the 1–Wire bus.  The ROM data
pattern that was found is stored in an internal 8–byte buffer.  This function allows a program to limit the
scope of the search algorithm to only those parts that may require attention because an alarm condi-
tion has been set.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 08 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL contains a 00 hex if no

alarming Presence signal was detected and 01 if a valid ROM was read and placed in the internal
8–byte buffer.

– There may be diagnostic results in DX (see text prior to this function list).

vi. NEXTALARM:  The NEXTALARM function transmits a TouchReset signal and returns false if no
alarming Presence signal is detected.  If an alarming Presence signal is detected, it executes the
ROM search algorithm to find the next alarming ROM data pattern on the 1–Wire bus.  The ROM data
pattern that was found is stored in an internal 8–byte buffer.  This function allows a program to limit the
scope of the search algorithm to only those parts that may require attention because an alarm condi-
tion has been set.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 09 hex.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.  If carry is not set then AL contains a 00 hex if no

alarming Presence signal was detected and 01 if a valid ROM was read and placed in the internal
8–byte buffer.

– There may be diagnostic results in DX (see text prior to this function list).

vii. READPACKET:  The READPACKET function reads an iButton Default Data Structure from the NV
RAM of a DS1992, 1993 or 1994 and DS1982 and stores it in a provided buffer.  The iButton Default
Data Structure is discussed in Chapter 10.  Note that the ROM pattern for the desired iButton must
already be in the internal 8–byte buffer before this function is called.  This constraint enables this
function to be multi–drop compatible.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0A hex.
– AL is the page number that the packet begins on (current devices range from 0 to 15).
– CX is the maximum number of bytes that can be read into the buffer.
– ES:BX is a far pointer (Segment:Offset) to an empty buffer for the data to be read.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.
– CX is the number of bytes read into the buffer.
– There may be diagnostic results in DX (see text prior to this function list).
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viii. WRITEPACKET:  The WRITEPACKET function writes an iButton Default Data Structure to the NV
RAM of a DS1992, 1993 or 1994 starting at a specified page.  The iButton Default Data Structure is
discussed in Chapter 10.  Note that the ROM pattern for the desired iButton must already be in the
internal 8–byte buffer before this function is called.  This constraint enables this function to be multi–
drop compatible.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0B hex.
– AL is the page number that the packet begins on (current devices range from 0 to 15).
– CX is the number of bytes to write.
– ES:BX is a far pointer (Segment:Offset) to the buffer of data to write.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.
– CX is the number of bytes written.
– There may be diagnostic results in DX (see text prior to this function list).

ix. BLOCKIO:  The BLOCKIO function is a general–purpose block transfer function.  A TouchReset signal is
done on the 1–Wire bus and returns false if no Presence signal was found.  If a device is present on the
1–Wire bus then the data is transferred one byte at a time using TouchByte.  The value that is returned is
then placed back into the same place in the data buffer.  This function is employed to communicate with
devices such as the DS1991 and the clock and register page of the DS1994 (see Chapter 6)

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0C hex.
– CX is the number of bytes to transfer (1024 max).
– ES:BX is a far pointer (Segment:Offset) to the data buffer to read and write.

Upon return from function:
– Carry is set if there is an error in execution.
– If carry is set then AL contains the error code.
– CX is the number of bytes transferred (0 if no device found).
– There may be diagnostic results in DX (see text prior to this function list).

(c) Hardware Interrupt Control Functions
Function codes beginning with AH = nD are reserved for the interrupt control functions that will be defined
in a future revision of this software. These functions will be used to support hardware interrupt capability
for detecting the arrival of iButtons, addressing the problems of enabling and disabling hardware inter-
rupts, handling near–simultaneous interrupts on different 1–Wire lines, and determining which line or
lines require interrupt service.

A.2.b. The TMEX Interrupt (Presentation Layer)
In order to insulate the programmer from the details of reading and writing into the Extended File Structure (see Chap-
ter 7), iButton TMEX was developed. This system provides the presentation layer of the layered architecture
described above, allowing data to be transferred to and from individual files in an iButton. Figure 9–1 illustrates the
organization of systems integration software for iButton communication into a layered structure.  The TMEX Interrupt
is provided by a TSR named TMEXFUN. TMEX functions are implemented as interrupt calls in the same manner as
the DOW Interrupts (see Section A.2.a of this chapter). The default interrupt–type for this interrupt is 63 hex, although
any other available interrupt–type in the range 60–66 hex may be specified on the command line. (Note that one of the
features provided by the TMEX Interrupt is the ability to locate the DOW Interrupt automatically, even if it is not
installed at 61 hex.)  A specific DOW Interrupt can be specified on the command line but only if the TMEX interrupt is
also specified.  For example, if the DOW interrupt is on 65 hex and you want the TMEX interrupt to be on 62 hex, then
use the command line: TMEXFUN 62 65
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iButton COMMUNICATION LAYERED SOFTWARE STRUCTURE Figure 9–1

APPLICATION LAYER –

PRESENTATION LAYER –

SESSION LAYER –

TRANSPORT LAYER –

NETWORK LAYER –
Access System (Extended I/O Functions)

LINK LAYER –
TouchReset, TouchByte, & TouchBit (Basic I/O)

PHYSICAL LAYER –
(Electrical Specifications of 1–Wire Bus)

Application Program using iButtons

iButton TMEX

(not usually required for iButton communication)

iButton Page I/O and CRC Checking

The TMEX interrupt has the same structure as the DOW Interrupt defined in section II.A.2.a.(1), except that Field #3
contains an ID string that begins with the ASCII characters “TMEX” followed immediately by an ASCII character in the
range “0”–“9” or “A”–“E” which identifies the level of support provided by the interrupt.

In much the same way as interrupt 21H (the “DOS” interrupt) provides the facility to read, write, and otherwise manipu-
late disk files, the TMEX interrupt implements a subset of the standard disk interrupt functions to read and write into
the Extended File Structure of an iButton.

In all of the TMEX Interrupt calls, the most significant nibble of AH contains the number of the desired 1–Wire port. The
least significant nibble of AH contains the TMEX function number. AL contains the result of the function call or error
code if the carry bit is set. Additional information may be returned in other registers. The error codes and their mean-
ings are given below:

1  => NO_DEVICE – no device found on 1–Wire
2  => WRONG_TYPE – wrong type of device, must be DS1992, 1993, 1994 or DS1982 in case of a read
3  => FILE_READ_ERR – file read error, including directory
4  => BUFFER_TOO_SMALL – buffer is smaller than read file
5  => HANDLE_NOT_AVAIL – no more file handles are left
6  => FILE_NOT_FOUND – file specified is not on this device
7  => REPEAT_FILE – file already exists with name provided
8  => HANDLE_NOT_USED – given handle is not assigned a file
9  => FILE_WRITE_ONLY – trying to read a write file handle
10 => OUT_OF_SPACE – not enough room on device to write
11 => FILE_WRITE_ERR – write error, part may have expired
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12 => FILE_READ_ONLY – trying to write a read file handle
13 => FUNC_NOT_SUP – function not supported
14 => BAD_FILENAME – illegal filename
15 => CANT_DEL_READ_ONLY – trying to delete read only file
16 => HANDLE_NOT_EXIST – handle does not exist
17 => ONE_WIRE_PORT_ERROR – error in the 1–Wire port, 1–Wire port may not be set up.

Some of the TMEX functions return a pointer to a file entry structure. This structure is given below as a ’C’ example.
Note that ’uchar’ is an ’unsigned char’ and would be the same as a ’BYTE’ in pascal.

typedef struct {
   uchar name[4]; /* four–character file name */
   uchar extension; /* extension number, range 0 – 127 */
   uchar startpage;   /* page number where file starts */
   uchar numpages; /* number of pages occupied by file */
   uchar readonly;      /* 1 if read only, 0 otherwise */
   uchar bitmap[4];    /* current bitmap of the device */
} FileEntry;

The ROM pattern for the desired iButton must already be in the internal eight–byte buffer before any TMEX function is
called. This can be accomplished by direct writing to the internal buffer or by use of the extended functions First or
Next. This constraint enables TMEX to be multi–drop compatible. The functions provided by the TMEX Interrupt are
specified below. Note that TMEX Version 1.10 does not support bitmap files or sub–directories.  Bitmap files are
required for devices providing more than 32 pages of memory, e.g., DS1995 or DS1996.

(1) FirstFile: The FirstFile function reads the directory of a specified iButton and returns a pointer to the file
information of the first file.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 01 hex.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the number of directory entries found or an error code if the carry is set.
– ES:BX is a far pointer (Segment:Offset) to the directory entry of the first file. The directory entry is a struc-

ture containing the file name, extension, location, size, attributes, etc.

(2) NextFile: The NextFile function reads the directory of a specified iButton if it has not already been done and
returns a pointer to the file information of the next file.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 02 hex.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is 01 hex if a next file was found or 00 hex if one was not.  AL is an error code if the carry is set.
– ES:BX is a far pointer (Segment:Offset) to the directory entry of the next file. The directory entry is a struc-

ture containing the file name, extension, location, size, attributes, etc.
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(3) OpenFile (for reading): The OpenFile function reads the directory of a specified iButton if it has not already
been done and searches for a file name. If it finds it then it assigns a file handle to it.  The handle can then be
used to read the file with the ReadFile function.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 03 hex.
– ES:BX is a far pointer (Segment:Offset) to the name of the file to be opened. See the FileEntry structure

above.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the file handle number or an error code if the carry is set.

(4) CreateFile (for writing): The CreateFile function reads the directory of a specified iButton if it has not already
been done and searchs for a file name. If it does not find it then it assigns a file handle to it.  The handle can then
be used to write the file with the WriteFile function.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 04 hex.
– ES:BX is a far pointer (Segment:Offset) to the name of the file to be opened. See the FileEntry structure

above.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the file handle number or an error code if the carry is set.
– CX is the maximum number of bytes available for a file.

(5) CloseFile: The CloseFile function closes the specified file handle.  This function should be called after a file
handle is no longer needed, such as after it has been used in a ReadFile function.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 05 hex.
– AL (lower nibble) is the file handle to be closed.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is an error code if the carry is set.

(6) ReadFile: The ReadFile function reads and stores the file specified by the file handle number.  The data is
stored in a buffer provided by the caller.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 06 hex.
– AL (lower nibble) is the file handle to be read.
– CX is the maximum number of bytes to read.
– ES:BX is a far pointer (Segment:Offset) to an empty buffer for the data to be read.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is an error code if the carry is set.
– CX is the number of bytes read.
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(7) WriteFile: The WriteFile function writes the file specified by the file handle number.  The length of the data and
the data location are provided by the caller.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 07 hex.
– AL (lower nibble) is the file handle to be read.
– CX is the number of bytes to write.
– ES:BX is a far pointer (Segment:Offset) to the buffer containing the data to be written.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is an error code if the carry is set.
– CX is the number of bytes written.

(8) DeleteFile: The DeleteFile function reads the directory of a specified iButton if it has not already been done and
searches for a file name. If it finds it then it deletes the file from the directory and updates the bitmap of used
pages.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 08 hex.
– ES:BX is a far pointer (Segment:Offset) to the name of the file to be Deleted.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the error code if the carry is set.

(9) Format: The Format function writes an empty directory into the specified iButton.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 09 hex.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the error code if the carry is set.

(10) Attribute: The Attribute function changes the write protect attribute of a specified file.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0A hex.
– AL is the file attribute. 01 hex for write protect and 00 hex for no write protect.
– ES:BX is a far pointer (Segment:Offset) to the name of the file.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is the error code if the carry is set.
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(11) ReNameFile: The ReNameFile function changes the name of a file that was previously opened using the
OpenFile function.  The file handle of the opened file and a new name are provided by caller.

Prior to function call:
– Upper nibble of AH is 1–Wire port number.
– Lower nibble of AH is 0B hex.
– AL (lower nibble) is the handle of the file to be re–named.
– ES:BX is a far pointer (Segment:Offset) to the new name of the file.

Upon return from function:
– Carry is set if there is any error in execution.
– AL is an error code if the carry is set.

B. Dynamic Link Libraries for Microsoft Windows (TMEXGEN and TMEXCOM)
In the Microsoft Windows operating environment, the functions of iButton TMEX are provided in the Dynamic Link
Libraries (DLLs) named TMEXGEN and TMEXCOM. Use of DLLs to provide common utility functions is a Windows
standard, and software development environments for Windows programs include the means to call on the functions
provided by DLLs. One of the main advantages of DLLs is that many different iButton programs (or many different
instances of the same program) can share the same DLL while executing simultaneously in the multitasking environ-
ment of Windows.

When using TMEXGEN.DLL for communication on the 1–wire bus, the TSR named BASFUN must be executed prior
to entering the Windows environment, in order to install the link layer for the DS9097 COM Port Adapter. The link layer
is kept separate from the DLL because the link layer is hardware dependent. This separation allows a different hard-
ware interface to the 1–Wire bus to be used in place of the serial port adapter without affecting the DLL. The functions
provided by TMEXGEN.DLL make interrupt calls to perform basic I/O functions on the 1–Wire bus. If a different link
layer for a different hardware interface is installed instead, then the functions provided by TMEXGEN will automati-
cally operate with the new hardware interface.

TMEXCOM.DLL provides exactly the same I/O functions for 1–wire communication as TMEXGEN.DLL, but TMEX-
COM is specialized to use the DS9097 COM port adapter exclusively. Use of TMEXCOM instead of TMEXGEN has
two advantages:

* The 1–wire communication functions execute faster because the overhead required to call an interrupt is
eliminated.

* It is not necessary to execute BASFUN or any other TSR to provide 1–wire interrupt service before entering
the Windows environment.

The primary disadvantage of TMEXCOM is that it is not hardware independent. Programs written to use TMEXCOM
will therefore have to be revised to take advantage of future advances in 1–wire communication hardware technology.
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Because Windows is a multitasking environment, the DLL functions must have as one of their parameters a pointer to
a packet of local state variables. This allows each simultaneous instance of an iButton program to maintain its own
state specification in order to operate independently of all the others. This is not required in the DOS environment
because only one program can be executed at a time. In addition, the multitasking environment requires support for a
Session Layer, allowing each instance of an iButton program to request exclusive control of the 1–Wire bus while
executing a critical sequence of iButton I/O functions. This is accomplished by means of a semaphore in the data
segment of the DLL, which is common to all simultaneous instances. Session functions are provided in the DLL to
request and release exclusive control of the 1–Wire bus by means of this semaphore. (Note that the non–preemptive
nature of Windows 3.1 multitasking often makes these session functions unnecessary. The session functions will
assume greater importance with future Windows environments that support preemptive multitasking.)

The C function prototypes of the functions provided by TMEXGEN and TMEXCOM are specified below. All functions
have the FAR PASCAL qualifiers required of DLL functions and return a result of type integer. In all of the functions
below in which the parameter ”Handle” appears, Handle is the session handle returned by the function TMStartSes-
sion. (A valid session must have been started before any of the functions requiring a session handle can be executed.)
All of the DLL functions will return –200 if the session handle ’Handle’ is not valid and –201 if the BASFUN interrupt is
not found if it is required by the DLL. A TMEX session in Windows has a time limit so that one iButton program can not
monopolize a 1–Wire line.  The time limit is initially 1 second.  If there is 1–Wire activity in that 1 second interval then the
session is extended another second.  These extensions are limited to 10 seconds total.  A session that has timed–out
will invalidate the ”Handle” and all functions will return –200.

The data types used in the DLL prototypes have the following definitions:

FAR – type attribute to make a pointer long
PASCAL – use the pascal calling convention for a function
int – signed 16–bit integer
BYTE – unsigned character byte
LPINT – long pointer to a signed 16–bit integer
BYTE FAR * – long pointer to an unsigned byte
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B.1. Version Function

int FAR PASCAL Get_Version(BYTE FAR *idbuf);

This special function is used to copy the identification string from the DLL being called into the buffer ’idbuf’. The
format for the identification string is ”xx_DLLNAME_Vz.zz_month/day/year” where:

_ represent spaces
xx hardware type code 00 to 99 that the DLL uses. 

00 general DLL requiring a BASFUN type interrupt
01 com port DLL

DLLNAME the name of the DLL that ranges in length from 1 to 8 characters.
Vz.zz version number. (i.e. V1.00)
month/day/year date DLL released

For example the identification string for this version TMEXCOM is

”01 TMEXCOM V1.10 1/1/94”.

If the DLL requires the use of an interrupt, such as TMEXGEN’s use of BASFUN, then the interrupt’s identification
string will be appended to ’idbuf’ with a ’&’. For example if TMEXGEN can find BASFUN then the identification string
may look like this:

”00 TMEXGEN V1.10 1/1/94 & DOW3 V1.10 1/1/94”

This functions also returns:

1 =>  identification string has be copied to ’idbuf’
0 =>  identification string was not copied possibly due to an error in finding required interrupts.

B.2. Basic Functions

These functions provide the same services as the Basic iButton Interrupts installed by the TSR named BASFUN.

B.2.a. int FAR PASCAL TMSetup(int Handle);

This function verifies the existence of the 1–Wire port and returns its condition as follows:

0 => Setup failed.
1 => Setup ok.
2 => Setup ok but 1–Wire bus shorted.
3 => 1–Wire bus does not exist.
4 => Setup not supported.

B.2.b. int FAR PASCAL TMTouchReset(int Handle);

This performs the Reset function on the 1–Wire bus, resetting all of the devices on the 1–Wire port. The
function returns the result of the operation as follows:

0 => No presence pulse detected.
1 => Non–alarming presence pulse detected.
2 => Alarming presence pulse detected.
3 => 1–Wire bus is shorted.
4 => Setup has not been run on 1–Wire port.
5 => TouchReset not supported.
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B.2.c. int FAR PASCAL TMTouchByte(int Handle, int outch);

This function transmits the least significant byte of the variable outch on the 1–wire bus and concurrently
receives a byte value from the 1–wire bus. The received byte is returned as the value of the function.

B.2.d. int FAR PASCAL TMTouchBit(int Handle, int outbit);

This function transmits the least significant bit of the variable outbit on the 1–wire bus and concurrently
receives a bit from the 1–wire bus. The received bit is returned as the value of the function.

B.2.e. int FAR PASCAL TMClose(int Handle);

This function closes a particular 1–Wire port. After this function is called on a 1–Wire port, the only way to
use it again is to call TMSetup.

B.3. Extended Functions

These functions provide the same services as the Extended iButton Interrupts installed by the TSR named EXT-
FUN. These functions all require a pointer to the local state variables which must be declared as an array ”GB” in the
application program. The length of the array in bytes is 208 times the number of the highest numbered port used,
plus 208.

B.3.a. int FAR PASCAL TMFirst(int Handle, BYTE FAR *GB);

Call the extended function ”First” to look for the first multi–drop device on the 1–Wire bus. Returns a value
of 1 if a part is found and 0 otherwise.

B.3.b. int FAR PASCAL TMNext(int Handle, BYTE FAR *GB);

Call the extended function ”Next” to look for the next multi–drop device on the 1–Wire bus. Returns a
value of 1 if the next part is found and 0 otherwise.

B.3.c. int FAR PASCAL TMAccess(int Handle, BYTE FAR *GB);

Call the extended function ”Access” to reset and start a new communication session with a particular
device on the 1–Wire bus. The selected device is the one whose ROM contents are located in the ROM
data buffer. The ROM data buffer can be filled with the ROM contents of a device by calling First or Next,
or by placing a specific ROM code in the buffer using the function TMRom described below.  Returns a
value of 1 if a part is on the 1–Wire and 0 otherwise.

B.3.d. int FAR PASCAL TMStrongAccess(int Handle, BYTE FAR *GB);

Call the extended function ”StrongAccess” to reset and start a new communication session with a partic-
ular device on the 1–Wire bus. This is the same as TMAccess except that instead of using a match ROM
command sequence the search ROM command sequence is used.  This accesses the iButton and also
verifies that it is on the 1–Wire. Returns a value of 1 if the selected part is on the 1–Wire and 0 otherwise.

B.3.e. int FAR PASCAL TMStrongAlarmAccess(int Handle, BYTE FAR *GB);

Call the extended function ”StrongAlarmAccess” to reset and start a new communication session with a
particular device on the 1–Wire bus. This is the same as TMStrongAccess except this function requires
that the iButton must have an alarm interrupt condition to be accessed.  Returns a value of 1 if the
selected part is on the 1–Wire and alarming, and 0 otherwise.
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B.3.f. int FAR PASCAL TMRom(int Handle, BYTE FAR *GB, LPINT ROM);

This function transfers a ROM data pattern between the internal eight–byte buffer maintained by the DLL
and an array ”ROM” of eight integers declared in the application program. The direction of data transfer is
specified by the value of the first integer in the array. If the first integer is zero, then the 8–bytes from the
internal buffer are transferred into the eight integer variables of the integer array. If the first integer is non–
zero, then the least significant bytes of the eight integers are transferred into the internal eight–byte
buffer. (This function allows an application program to obtain the ROM data of a device that has been
found with the TMFirst or TMNext functions. It also allows the application program to specify the ROM
data of a specific device to be addressed with the TMAccess function.)

B.3.g. int FAR PASCAL TMFirstAlarm(int Handle, BYTE FAR *GB);

The function TMFirstAlarm operates exactly like the function TMFirst described above, except that the
search is limited to those parts with an active alarm interrupt pending. This allows a program to limit the
scope of the search algorithm to only those parts that may require attention because an alarm condition
has been set.

B.3.h. int FAR PASCAL TMNextAlarm(int Handle, BYTE FAR *GB);

The function TMNextAlarm operates exactly like the function TMNext described above, except that the
search is limited to those parts with an active alarm interrupt pending.

B.3.i. int FAR PASCAL TMReadPacket(int Handle, BYTE FAR *GB, int StartPage, BYTE FAR 
      *ReadBuf, int MaxRead);

The function TMReadPacket reads a Default Data Structure packet starting on ”StartPage” in a Memory
iButton.  The data is placed into ”ReadBuf” up to a maximum of ”MaxRead” bytes. Returns a read count
length greater then or equal to 0 for success or one of the following negative values for a failure:

–1  / 1–Wire not initialized with SETUP /
–2  / specified 1–Wire port nonexistent /
–3  / function not supported /
–4  / error reading or writing a packet /
–5  / packet larger than provided buffer /
–6  / not enough room for packet on device /
–7  / device not found
–8  / block transfer too long /
–9  / wrong type of device for this function /

B.3.j. int FAR PASCAL TMWritePacket(int Handle, BYTE FAR *GB, int StartPage, BYTE FAR
      *WriteBuf, int NumWrite);

The function TMWritePacket writes a Default Data Structure packet starting on ”StartPage” in a Memory
iButton.  The ”NumWrite” bytes of data in ”WriteBuf”is written. Returns a byte length greater then or equal
to 0 for success or one of the negative values described in ”TMReadPacket” for a failure.

B.3.k. int FAR PASCAL TMBlockIO(int Handle, BYTE FAR *GB, BYTE FAR *TranBuf, int 
       NumTran);

The function TMBlockIO is a general purpose block transfer function.  A TouchReset is done followed by
TouchBytes of all of the ”NumTran” bytes in the ”TranBuf” data buffer.  The values returned from the
TouchBytes are placed back into the ”TranBuf” data buffer.  Returns a byte length greater then or equal to
0 for success or one of the negative values described in ”TMReadPacket” for a failure.
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Note that this is a ”raw” I/O function. To address a particular part on a multidrop 1–Wire bus, it is neces-
sary to supply the match ROM command byte (55H) and the eight ROM bytes from the internal 8–byte
buffer before giving any commands to read or write the NVRAM memory.

B.4. TMEX Functions

The following functions return an integer value representing the result of the operation. Negative results indicate
that a TMEX error has occurred. The TMEX error codes and their meanings are given below:

–1  => NO_DEVICE – no device found on 1–Wire
–2  => WRONG_TYPE – wrong type of device, must be DS1992,3,4
–3  => FILE_READ_ERR – file read error, including directory
–4  => BUFFER_TOO_SMALL – buffer is smaller than read file
–5  => HANDLE_NOT_AVAIL – no more file handles are left
–6  => FILE_NOT_FOUND – file specified is not on this device
–7  => REPEAT_FILE – file already exists with name provided
–8  => HANDLE_NOT_USED – given handle is not assigned a file
–9  => FILE_WRITE_ONLY – trying to read a write file handle
–10 => OUT_OF_SPACE – not enough room on device to write
–11 => FILE_WRITE_ERR – write error, part may have expired
–12 => FILE_READ_ONLY – trying to write a read file handle
–13 => FUNC_NOT_SUP – function not supported
–14 => BAD_FILENAME – illegal filename
–15 => CANT_DEL_READ_ONLY – trying to delete read only file
–16 => HANDLE_NOT_EXIST – handle does not exist
–17 => ONE_WIRE_PORT_ERROR – error in the 1–Wire port, 1–Wire port may not be setup.
–200 => INVALID_SESSION – the session handle provided is invalid

The TMEX functions and the operations performed by them are specified as follows:

B.4.a. int FAR PASCAL TMFirstFile(int Handle, BYTE FAR *GB, BYTE FAR *FileName);

This function finds the first file in the device on the 1–Wire port and copies information about the file into
the buffer ”FileName”. The information is in the form of a structure. The organization of the structure is as
follows:

typedef struct {
   uchar name[4]; /* four–character file name */
   uchar extension; /* extension number, range 0 – 127 */
   uchar startpage; /* page number where file starts */
   uchar numpages; /* number of pages occupied by file */
   uchar readonly; /* 1 if read only, 0 otherwise */
   uchar bitmap[4]; /* current bitmap of the device */
} FileEntry;

This function returns:
>0 => number of file entries in directory, first file entry is in buffer ”FileName”
0 => if the device has an empty directory
<0 => a TMEX error has occurred
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B.4.b. int FAR PASCAL TMNextFile(int Handle, BYTE FAR *GB, BYTE FAR *FileName);

This function finds the next file in the device on the 1–Wire port and copies information about the file into
the buffer ”FileName”. The information is in the form of a structure. The organization of the structure is
described in ”TMFirstFile” above.

This function returns:
1  => if the next file was found, data is in buffer ”FileName”
0  => if there are no more files in the directory
<0   => a TMEX error has occurred

B.4.c. int FAR PASCAL TMOpenFile(int Handle, BYTE FAR *GB, BYTE FAR  *FileName);

This function finds the filename specified in the buffer ”FileName” and returns a handle for that file. The
filename must be in the format specified in ”TMFirstFile.” Only the ”name[4]” and ”extension” are used,
however.

This function returns:
>= 0  => file found, and this is the file handle
< 0  => a TMEX error has occurred

B.4.d. int FAR PASCAL TMCreateFile(int Handle, BYTE FAR *GB, LPINT maxwrite, BYTE FAR
       *FileName);

This function searches for the file specified in the buffer ”FileName” to verify that it does not already exist,
and returns the file handle.

This function returns:
>= 0 => file created, and this is the file handle
< 0  => a TMEX error has occurred

B.4.e. int FAR PASCAL TMCloseFile(int Handle, BYTE FAR *GB, int FileHandle);

This function closes the file specified by ”FileHandle.”

The function returns:
1   => file closed
< 0 => a TMEX error has occurred

B.4.f. int FAR PASCAL TMReadFile(int Handle, BYTE FAR *GB, int FileHandle, BYTE FAR
      *ReadBuf, int maxread);

This function reads from the file specified by the file handle number ”FileHandle” and copies it into the
buffer ”ReadBuf,” not to exceed ”maxread” characters.

The function returns:
 >= 0  => file read, and this is the number of bytes
< 0   => a TMEX error has occurred

B.4.g. int FAR PASCAL TMWriteFile(int Handle, BYTE FAR *GB, int FileHandle, BYTE FAR 
      *WriteBuf, int numwrite);

This function writes the file specified by the file handle ”FileHandle” with the data from the buffer ”Write-
Buf,” containing ”numwrite” characters.

The function returns:
>= 0 => file written, and this is the number of bytes
< 0  => a TMEX error has occurred
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B.4.h. int FAR PASCAL TMDeleteFile(int Handle, BYTE FAR *GB, BYTE FAR *FileName);

This function deletes the file named ”FileName.”

The function returns:
1   => file successfully deleted
< 0 => a TMEX error has occurred

B.4.i. int FAR PASCAL TMFormat(int Handle, BYTE FAR *GB);

This function writes an empty directory into the Memory iButton.

The function returns:
1   => Memory iButton successfully formatted
< 0 => a TMEX error has occurred

B.4.j. int FAR PASCAL TMAttribute(int Handle, BYTE FAR *GB, int attr, BYTE FAR *FileName);

This function changes the attributes of the file ”FileName” to the attributes ”attr.”

The function returns:
1    => file attribute changed to ”attr”
< 0 => a TMEX error has occurred

B.4.k. int FAR PASCAL TMReNameFile(int Handle, BYTE FAR *GB, int FileHandle, BYTE FAR
       *FileName);

This function changes the name of a previously opened file specified by the ”FileHandle”.  The new name
is given in ”FileName”.

The function returns:
1 => file name changed to ”FileName”
< 0 => a TMEX error has occurred

B.5. Session Functions
The functions in this section are used to establish a session on the 1–Wire bus, return a session handle to use in
subsequent communication, and to establish whether a valid session is in progress. (Because Windows is a multi–
tasking environment, a session is needed to prevent interference between simultaneous instances of programs that
communicate on the 1–Wire bus.)

B.5.a. int FAR PASCAL TMStartSession(int Prt);

This function is called with the port number ”Prt” of the 1–Wire bus to be used. (For example, using the
DS9097 COM port adapter, this would be the COM port number.) The function returns the session handle
number if the session has been established, and 0 to indicate that the 1–Wire bus is busy while another
session is in progress.  The session handle is good for at least 1 second and up to 10 seconds with contin-
uous use.

B.5.b. int FAR PASCAL TMValidSession(int Handle);

This function is called to determine whether a session is still valid with the specified session handle. It
returns a 1 if the session is established, and 0 otherwise.

B.5.c. int FAR PASCAL TMEndSession(int Handle);

This function is called to close a session of iButton communication on the 1–Wire bus. It returns a 1 if the
session specified by ”Handle” was successfully closed, and 0 if there was no valid session established
with the specified session handle.

It is the responsibility of the programmer to open and close sessions frequently, in order to allow other instances of
iButton programs to continue executing in the multi–tasking environment. In general, a session should be opened, a
specific indivisible task should be performed, and then the session should be closed to allow other programs to
access the 1–Wire bus.
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C. EXAMPLE PROGRAMS UTILIZING TMEX

This section describes the sample programs which have been provided to demonstrate the use of TMEX. The sample
programs for the MS DOS environment are designed to perform familiar utility operations on Touch Memory data files,
similar to those provided by standard DOS commands. These programs are written in Borland C. The C program
examples call on a library of routines that are very similar to the DLL routines described above. The library in turn calls
on the TMEX interrupt functions. The library source is provided with the DS0621 TMEX Professional Developer’s
Upgrade.  All of these programs assume DS9097 COM–port adaptor and only one iButton of type DS1992/3/4 on the
1–Wire bus.

C.1. MS DOS Programming Examples in C
The following utility programs are provided as C source code and also as executables. These programs demon-
strate functions provided by the interrupt calls of TMEX. For these programs to function, the interrupt service rou-
tines ’BASFUN’, ’EXTFUN’, and ’TMEXFUN’ must be installed first (for installation see sections A.2.a and A.2.b).

C.1.a. TTYPE

The TMEX utility ’TTYPE’ is similar to the DOS command ’TYPE’ in that it prints the file specified to stan-
dard output. The output can be redirected into another file. Providing ’TTYPE’ with a single argument of
’?’ will give the following usage message:

usage: ttype filename <OneWirePort>
–  displays the iButton data from the file ’filename’ through OneWirePort
– argument 1 specifies filename
– ’filename’ must have the format NAME.XXX, where ’NAME’ is up to a 4 digit alphanumeric name 

and XXX is a number extension in the range 0–126.
– <optional> argument 2 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– output may be redirected. Example: ttype NAME.124 > NAME.124
– version 1.10

’TTYPE’ has the following source files:
TTYPE.C – the main ttype program.
TUTIL.C – varies utility routines common to all of the TMEX programs.
TMEXLIB.C – library of routines that use the interrupt calls to implement basic, extended and 

TMEX functions. The function prototypes and return values are very similar to
the TMEX DLLs.

TMEXUTIL.H – include file containing includes and global variables common to all of the 
TMEX programs.

C.1.b. TDIR

The TMEX utility ’TDIR’ is similar to the DOS command ’DIR’ in that it prints a list of the files on a device. It
also provides the length, starting location, and attributes of each file. The output can be redirected into
another file. Providing ’TDIR’ with a single argument of ’?’ will give the following usage message:

usage: tdir <OneWirePort>
– displays the root directory of an iButton on OneWirePort
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

’TDIR’ has the following source files:
TDIR.C – the main tdir program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.
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C.1.c. TDEL

The TMEX utility ’TDEL’ is similar to the DOS command ’DEL’ in that it deletes a file from a device. It can
only delete a single file at a time. If all files must be deleted, use ’TFORMAT’. Providing ’TDEL’ with a
single argument of ’?’ will give the following usage message:

usage: tdel filename <OneWirePort>
– delete the file ’filename’ on OneWirePort
– argument 1 specifies filename
– ’filename’ must have the format NAME.XXX, where ’NAME’ is up to a 4 digit alphanumeric name 

and XXX is a number extension in the range 0–126.
– <optional> argument 2 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

’TDEL’ has the following source files:
TDEL.C – the main tdel program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.

C.1.d. TATTRIB

The TMEX utility ’TATTRIB’ is similar to the DOS command ’ATTRIB’ in that it changes the attribute of a
file on a device. For TMEX Version 1.10, the only attribute is read–only. Providing ’TATTRIB’ with a single
argument of ’?’ will give the following usage message:

usage: tattrib (+R | –R) filename <OneWirePort>
– changes the read only attribute of the file ’filename’ through OneWirePort
– argument 1 specifies if the attribute is to be added ’+R’ or taken away ’–R’
– argument 2 specifies filename
– ’filename’ must have the format NAME.XXX, where ’NAME’ is up to a 4 digit alphanumeric name 

and XXX is a number extension in the  range 0–126.
– <optional> argument 3 specifies OneWirePort
– default OneWirePort may be specified in file default.prt 
– version 1.10

’TATTRIB’ has the following source files:
TATTRIB.C – the main tattrib program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.

C.1.e. TCOPY

The TMEX utility ’TCOPY’ is similar to the DOS command ’COPY’ in that it can copy a DOS file to an
iButton Memory device. It can not copy a file from an iButton to a DOS file however. To copy a file from an
iButton, use ’TTYPE’ and redirection. Providing ’TCOPY’ with a single argument of ’?’ will give the follow-
ing usage message:

usage: tcopy source destination <OneWirePort>
– copies the DOS file ’source’ to the iButton on OneWirePort 
– argument 1 specifies the DOS source filename
– argument 2 specifies the iButton destination filename. NAME.XXX where ’NAME’ is up 

to a 4 digit alphanumeric name and XXX is a number extension in the range 0–126.
– <optional> argument 3 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10
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’TCOPY’ has the following source files:
TCOPY.C – the main tcopy program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.

C.1.f. TFORMAT

The TMEX utility ’TFORMAT’ is similar to the DOS command ’FORMAT’ in that it re–formats an iButton
device. Unlike DOS however, this is a quick operation. ’TFORMAT’ will delete all files on an iButton
device regardless of the attributes. Providing ’TFORMAT’ with a single argument of ’?’ will give the follow-
ing usage message:

usage: tformat <OneWirePort>
– formats an iButton on OneWirePort
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

’TFORMAT’ has the following source files:
TFORMAT.C – the main tformat program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.

C.1.g. TREN

The TMEX utility ’TREN’ is similar to the DOS command ’REN’ in that it renames a file. It can only rename
a single file at a time.  Providing ’TREN’ with a single argument of ’?’ will give the following usage mes-
sage:

usage: tren oldfilename newfilename <OneWirePort>
– rename the file ’oldfilename’ to ’newfilename’ on OneWirePort
– argument 1 specifies the old filename
– ’oldfilename’ must have the format NAME.XXX, where ’NAME’ is up to a 4 digit alphanumeric 

name and XXX is a number extension in the range 0–126.
–  ’newfilename’ must be in the same format as ’oldfilname’.
– <optional> argument 3 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

’TREN’ has the following source files:
TREN.C – the main tren program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.

C.1.h. TPEEK

The TMEX utility ’TPEEK’ examines the interrupts 60H through 66H and displays the TSR ID strings
found there.  This utility can be used to see if the TMEX TSR’s have already been installed.  Providing
’TPEEK’ with a single argument of ’?’ will give the following message:

usage: tpeek
– displays the ID strings from any TMEX driver found on interrupts 60H to 66H.
– version 1.10

’TPEEK’ has the following source files:
TPEEK.C – main tpeek program.
TUTIL.C, TMEXLIB.C, and TMEXUTIL.H – as described in ’TTYPE’.
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C.2. Other iButton Utilities for MS DOS
The following utility programs provide services similar to those in section D.1. above. Since these programs are
rather long and do not demonstrate any new techniques, they are provided in executable form only.

C.2.a. TVIEW

The TMEX utility ’TVIEW’ displays a list of the files on an iButton device and also some device informa-
tion. Using the arrow keys, a file can be selected and its contents displayed. Providing ’TVIEW’ with a
single argument of ’?’ will give the following usage message:

usage: tview <OneWirePort> <bw>
– displays the root directory of an iButton on OneWirePort
– allows the individual files to be examined
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– <optional> argument 2 selects black and white mode.
– version 1.10

C.2.b. TCHK

The TMEX utility ’TCHK’ checks the extended file structure of an iButton device for errors or fragmenta-
tion. Each file is checked and its status given. Providing ’TCHK’ with a single argument of ’?’ will give the
following usage message:

usage: tchk <OneWirePort>
– checks the directory and files of an iButton on OneWirePort 
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

C.2.c. TOPT

The TMEX utility ’TOPT’ checks the extended file structure as in ’TCHK’ and then corrects any problems
found. Providing ’TOPT’ with a single argument of ’?’ will give the following usage message:

usage: tchk <OneWirePort>
– checks the directory and files of a Memory iButton on OneWirePort
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10

C.2.d. TMEMCOPY

The TMEX utility ’TMEMCOPY’ copies the contents of one iButton Memory to another.  This utility
searches the entire iButton for valid data structures and copies them to any iButton that has correspond-
ing pages.  A data structure is considered to be valid if it is according to the description given in Chapter 7,
“iButton File Structure.”  Providing ’TMEMCOPY’ with a single argument of ’?’ will give the following mes-
sages:

usage: tmemcopy <OneWirePort>
– copy all valid data packets from one iButton to another
– <optional> argument 1 specifies OneWirePort
– default OneWirePort may be specified in file default.prt
– version 1.10
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D. Programming Considerations

D.1. General Considerations

D.1.a. BIOS Support
It is envisioned that in a typical implementation, code to
support both the basic and the extended 1–Wire interrupt
functions would be incorporated into the BIOS ROM. In
the event that BIOS ROM space is limited, the basic inter-
rupt functions could be incorporated in ROM and the
extended functions, being hardware–independent, could
be loaded into RAM, either with a device driver or TSR
program. (A TSR or device driver could also be used at
any time to substitute a new set of interrupt support rou-
tines for use with a different hardware interface, such as
the RS232C serial port adaptor.) The primary advantage
of the BIOS implementation of the basic functions is hard-
ware independence, i.e., the functions operate the same
way regardless of the hardware implementation. This
permits a wide latitude in designing the 1–Wire support
hardware. (In many cases the required I/O pins are
already available for use and need only to be suitably
connected on the PC motherboard.)

D.1.b. Calling from Application Programs
An MS–DOS application program can perform any
desired iButton I/O operation by making direct calls to the
interrupts defined in this document. An MS–Windows
program can achieve the same result by calling the func-
tions defined in the TMEX DLL.

D.2. Linkable Device Drivers
While the interrupt–level device drivers described in sec-
tion A above provide comprehensive modular support for
iButton I/O, there are some cases in which it would be
preferable to include the iButton I/O procedures as part of
the main application program. This is accomplished by
linking the desired procedures from an iButton I/O library
designed to be linked to a variety of different high–level
languages. These linkable I/O procedures provide
essentially the same basic and extended functions as the
interrupt–level device drivers described in section
II.A.2.a.(2) above. Some of the advantages of this
approach are listed below.

D.2.a Independence
With a built–in set of iButton I/O procedures, the program
does not require that the I/O firmware be installed (e.g.,
by executing a TSR) before the program is run. Also,
once execution of the program is completed, the code for
iButton I/O is automatically removed from memory,
thereby releasing that memory for other uses. Also, the
built–in procedures do not interfere with existing inter-

rupts in the PC that might otherwise be in conflict with the
interrupts designated for the iButton I/O drivers.

D.2.b. Security
In applications such as software access control and
usage auditing for which the iButton provides a security
function, the linked iButton I/O procedures provide a
greater degree of security because the information flow is
more difficult to trace. (The interrupt–level device drivers
can easily be traced with a filter TSR that monitors activity
on the iButton I/O interrupts. While this would normally be
considered an advantage for diagnostic purposes, it is
disadvantageous for security purposes because the data
flow to and from the iButton is no longer concealed.)

The main difficulty in linking iButton I/O procedures to
high–level languages is that each language has different
calling conventions, parameter passing requirements,
and segment naming rules. Even within a single lan-
guage, the choice of memory model affects calling and
parameter passing requirements. This problem can be
dealt with by providing the basic and extended iButton I/O
procedures as linkable .OBJ modules designed specifi-
cally for use with various common language compilers.
The .OBJ modules can be made more generally linkable
by putting them in the large memory model with the Pas-
cal calling convention. They can then be called from Pas-
cal directly, and from C by declaring function prototypes
with the ”far” and ”pascal” qualifiers to override the default
attributes. To call them from other languages (Basic, For-
tran, etc.), it may be necessary to use a short patch code
which converts between the different calling conventions.
(Alternatively, the iButton I/O procedures can be coded
directly in the appropriate high–level language and
recompiled to insure compatibility. While this approach
guarantees correct linkage, it sacrifices the code size and
speed advantage derived from hand coding in assembly
language.)

When security is not an issue, the greatest flexibility can
be achieved by writing the application code so that it first
checks whether the interrupt–level device drivers are
installed. If they are installed, it uses them for commu-
nication with iButtons. If they are not installed, it uses
instead the linkable device drivers for communication
with a particular hardware interface (such as the DS9097
COM Port Adapter) as a default. This provides the end
user with a program which can operate independently,
but which can also automatically take advantage of spe-
cialized iButton reading hardware and interrupt–level
device drivers if they are installed in his computer system.
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III.iButton Usage With Other Computers And
Operating Systems

A variety of different options are available from Dallas
Semiconductor for communication with iButtons from
computers other than IBM–compatible PCs. For com-
puters other than IBM PCs and compatibles, several
possible interfaces can be used for iButton communica-
tion. These include the 8250 UART, the iButton Periph-
eral Control Card, and the Phantom Bus Interface pre-
viously described in Chapter 8. With each of these
interfaces, the key to communication lies in the imple-
mentation of the basic 1–Wire functions of the link layer
(TouchReset, TouchByte, and TouchBit) to operate with
the desired interface. The network layer, transport layer,
session layer (if needed) and presentation layer can be
coded in a portable, high–level language.

IV. Microcontroller Programming Support For
iButtons

Microcontrollers offer the simplest and most flexible inter-
face to iButton products because the electrical connec-
tion is extremely simple and because the event timing
needed to communicate with iButtons in microcontroller
applications can be performed with high precision. On the
other hand, it is impractical to provide a single set of soft-
ware which is suitable for all microcontrollers because
the instruction sets of various microcontrollers are differ-
ent and because, even with a single microcontroller, the
coding of iButton I/O procedures depends on clock crys-
tal frequency, limitations on available microprocessor
resources, choice of firmware development tools, and
other factors. This section presents design factors that
should be considered in constructing microcontroller
firmware for iButton I/O. It should be noted that many of
the design factors presented here apply equally well to
any implementation of iButton I/O software.

In microcontrollers, it is generally necessary to write the
code to generate the reset/presence signals and the
time slot I/O signals in assembly language to achieve
the correct timing. All other code can be written in non–
time–critical assembly language or in a high–level lan-
guage designed for microcontrollers. This section
describes the recommended structure of microcontrol-
ler firmware for communicating with iButtons.

A. TouchReset
The procedure TouchReset delivers the Reset signal to
the 1–Wire bus and returns a Boolean result indicating
whether a Presence signal was detected. (The Pres-

ence signal is indicated by a low pulse occurring within
60 µs after the rising edge of the Reset signal and lasting
between 60 and 240 µs.) In addition, it is possible for the
TouchReset function to detect and report several other
conditions which may or may not be needed in any par-
ticular application. These other conditions are
described below.

A.1. Alarm Pending
It is possible to detect a pending alarm condition during
the presence detect phase, and this condition may also
be reported by the TouchReset function. (The pending
alarm condition is indicated when the 1–Wire bus
remains low continuously for at least 960 µs after the fal-
ling edge of the Reset signal, but no longer than
3840 µs.)

A.2. Short Circuit
The TouchReset function may detect that the 1–Wire
bus remains low continuously for at least 3840 µs after
the falling edge of the Reset signal, indicating a short cir-
cuit on the 1–Wire bus. Depending on the application,
the TouchReset function may return only a Presence
result, or it may also discriminate the alarm pending and
short circuit conditions. (When only the Presence result
is returned, it should be returned True if an alarm condi-
tion is present but False if a short circuit is detected.)

A.3. Adaptive Timing
During the Reset sequence, the Presence signal
received from the 1–Wire bus can be used to optimize
the timing for communication with the particular devices
connected on the bus when the TouchReset procedure
is executed. This information is derived from measure-
ments of the length of time between the rising edge of
the Reset signal and the beginning of the Presence
pulse and the length of the Presence pulse itself. The
potential advantage of adaptive timing is that with a typi-
cal iButton with an internal time base of 30 µs, adaptive
timing allows communication at approximately twice the
non–adaptive rate, and also allows approximately twice
the recovery time to overcome the effect of long–line
capacitance, thereby increasing the reliability of long–
line communication. When multiple iButtons are on the
1–Wire bus, the time base of the slowest part and the
time base of the fastest part can be calculated from the
measured times. The time base of the slowest part limits
the data transmission rate, whereas the time base of the
fastest part limits the signal recovery time. (Non–adap-
tive procedures assume the worst–case range of 15 to
60 µs for the internal time base. Adaptive procedures
become identical to non–adaptive procedures when
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connected to a 1–Wire bus having both a 15 µs and a 60
µs iButton.) Note that when adaptive timing is used, the
timing should be recalibrated after every reset pulse to
insure that the communication to follow is correctly
timed.

B. Touchbit
This procedure transfers a single bit of information on
the 1–Wire bus, and returns a single bit which indicates
the information returned by one or more of the iButton
devices on the bus. (The use of a single procedure for
both output and input parallels the bi–directional port pin
hardware philosophy. The advantage of using a proce-
dure in which the direction of data flow is unspecified is
that it is easier to relay iButton data from one processor
to another because the intermediate processors do not
have to know which direction information is flowing.)

C. Touchbyte
This is a derived function which transmits and receives
all eight bits of a byte. The bits of the byte are transmitted
and received least significant bit first. (The function is
easily implemented by calling the TouchBit procedure
eight times.)

D. Access System
The Access System provides the networking support
functions which are required to handle multiple iButtons
on a common 1–Wire bus. These functions are
described in section II.A.2.a.(2)(b). Since these func-
tions communicate with the 1–Wire bus through the pro-
cedures TouchReset, TouchByte, and TouchBit, they
are themselves hardware– and timing– independent.
They may therefore be coded in a high–level language.

E. Hardware Interrupt Handling
One of the advantages of an iButton is that it is able to
generate an interrupt request on the 1–Wire bus when it
requires attention. In order to be able to respond to
these interrupts, the port pin to which the 1–Wire bus is
attached must support a hardware interrupt triggered by
the falling edge of the voltage signal on the bus. Inter-
rupts may result from one of the following circum-
stances:

1. When an iButton first makes contact with the 1–Wire
bus, it generates a Presence signal which may be
used to trigger a hardware interrupt, provided that
hardware interrupts are enabled when the contact is
made. This interrupt signals that a new part has
arrived on the bus, and that a search of the bus
should be performed to identify and communicate
with the new part.

2. When an iButton with alarm capability (e.g.,
DS1994) detects an alarm condition and the last sig-
nal on the 1–Wire bus was the Reset/Presence sig-
nal, the part will apply the alarm signal to the 1–Wire
bus, again triggering a hardware interrupt. (To insure
that this interrupt source can be detected, the pro-
cessor interrupt capability must be enabled by set-
ting the interrupt enable bit for the desired port pin,
and the iButton interrupt capability must be enabled
by transmitting the Reset signal on the 1–Wire bus.)
This indicates that a predefined alarm condition in
the iButton has been satisfied, and that the special
function registers of the iButton should be read to
identify the condition that caused the alarm. (Note
that when using alarm interrupts in a multidrop envi-
ronment, the alarm search command EC hex is very
desirable as a means to limit the search to those
parts which may have caused the interrupt.)

V. Usage Of iButtons With Centralized
Computers

There are several possible interfaces to centralized
computers. All of the following methods remove the criti-
cal 1–Wire timing from the computer so that the soft-
ware resident in the computer is language– and operat-
ing system–independent. Common to all larger
computers is the RS232C interface.

The simplest interface for this is the iButton Terminal
Interface. This device is inserted into the serial link
between the centralized computer and a dumb terminal.
Data from iButtons is injected into the serial data stream
and sent to the centralized device as if it had been
entered from the keyboard of the terminal. Specially
coded data from the central computer can be buffered
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and written into the next iButton that is placed into con-
tact with the probe. With the iButton Terminal Interface,
a centralized computer need only be concerned with a
high level representation of the data contained in the
iButtons. Hardware information on centralized com-
puter interfacing can be found in ”50 Ways to Touch
Memory.”

VI. TMEX2.00 Enhancements

As indicated earlier in this chapter, TMEX 2.00 provides
functions to support high–density SRAM and EPROM
iButtons. The enhancements apply equally to the DOS
and WINDOWS implementation. These new functions
are:

• TMEpromPulse, to generate a program pulse,

• TMFamilySearch, to perform a ROM search for a par-
ticular family code only,

• TMSkipFamily, to perform a ROM search disregard-
ing a particular family code,

• TMReadEpromPage, to read a particular page of
EPROM status or data memory

• TMWriteEpromByte, to write a byte of EPROM data
or status memory,

• TMDirectoryMR, to make or remove a (sub–) direc-
tory,

• TMChangeDirectory, to change from the current
directory to another one,

• TMCreateEpromJob, to prepare a data structure to be
written to an EPROM device and

• TMDoEpromJob to write the data generated with
TMCreateEpromJob to an EPROM–based iButton.

Due to the implementation of (sub–) directories with
TMEX2.00, the group of DOS utilities (section C of this
chapter) was enhanced by:

• TMD, to make a (sub–) directory

• TRD, to remove a (sub–)directory,

• TCD, to change the directory and

• TTREE, to list the directory structure of a device.

These and the other DOS–utilities (exception: TOPT)
now apply to all iButtons, SRAM and EPROM, all densi-
ties. A full description of all new functions will be found
on the TMEX disk.

VII. Chapter Summary

This chapter presents the various implementations of
systems integration software, including IBM PCs and
compatibles, other computers and operating systems,
microcontrollers, and centralized computers. The sys-
tem integration software is organized in a layered struc-
ture, with the lowest software layer (link layer) providing
the basic 1–Wire I/O procedures, the intermediate layer
(network layer) handling multi–drop communication,
and the highest layer (presentation layer) providing file
structure for iButtons similar to that of a diskette.

NOTE:
At the time this document was converted from “Touch
Memory” to “iButton” the current TMEX was Revision
3.00.  For owners of the DS9092k all TMEX DOS utilities
mentioned in this chapter as well as a TMEX–based
Windows Application (3.1 and 95/NT) called “iButton
Viewer” including documentation are available for free
as executable programs if downloaded from the Dallas
Semiconductor web site.
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CHAPTER 10: VALIDATION OF i Button
STANDARDS

I. Introduction

This book defines mechanical, electrical, and logical
iButton standards. As with any standard, there are ways
to ensure that an application meets the standards. For
applications in full compliance with the standard, Dallas
Semiconductor will authorize the use of Certified Dallas
TouchTM labels, which can be placed on a company’s
products.

II. Touch Validator

The Touch Validator is a Touch Pen with the addition of
validation firmware executed by the internal processor.
The Touch Validator checks timing characteristics,
ROM contents, and the structure of data stored in the
nonvolatile RAM of a Memory iButton. Beyond that, it
runs a diagnostic on the integrity of the file structure (not
applicable for the DS1990A and DS1991). If any devi-
ation from the standards is detected, the complete RAM
contents are copied for additional analysis by a PC. This
mode of operation allows fast ”go/no go” checking and
validation directly at the location of the iButton. For
information on Validator firmware, please contact Dallas
Semiconductor.

III. Default Data Structure

Since it is an official standard, the validation firmware
will also accept the Default Data Structure, which is
actually the predecessor of the file structure described
in Chapter 7. The Default Data Structure has advan-

tages in applications where a sophisticated directory
structure is not required. It saves some space since one
page can contain up to 32 bytes of application data
instead of 28; it also simplifies the software, which will
save ROM code of single–chip microcontrollers. In con-
trast to the Extended File Structure, however, the
Default Data Structure does not support multiple files in
the same device, CRC–checked reading of single
memory pages, scattered continuation pages, and data
records of more than 508 bytes.

The default data structure assumes that only one
unnamed file will be stored in an iButton. It defines that
the first one or two bytes on page 0 contain the length of
the data record. If the data record is longer than 254
bytes, then the first byte of page 0 is 255, and the second
byte is deployed to store the number of bytes exceeding
255. The first byte following the length byte(s) must be
an ASCII code less than 128 (80H). After the application
data, there must follow an inverted CRC16 double–byte
(Figure 10–1). The length byte(s) itself and the CRC16
are not counted to determine the length.  As with the
extended file structure, the length byte(s) is included in
the CRC16 calculation.  Before the CRC16 calculation,
the CRC16 accumulator is initialized to zero.

IV. Chapter Summary

The Touch Validator is a device that checks whether an
iButton Application is in compliance with the iButton
standards as described in this book. In addition to the
iButton File Structure described in Chapter 7, the
Default Data Structure is accepted as standard for sim-
ple applications.

iButton DEFAULT DATA STRUCTURE Figure 10–1

page 0 page 1 . . . . . . . . . . page i page n. . . . . . . . . .

N multiple page data record LO HI undefined

one or two byte length CRC16 double–byte
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APPENDIX 1
UNDERSTANDING AND USING CYCLIC REDUNDANCY CHECKS WITH i Buton PRODUCTS

INTRODUCTION
The Dallas Semiconductor iButton products are a family
of devices that all communicate over a single wire fol-
lowing a specific command sequence referred to as the
1–WireTM Protocol. A key feature of each device is a
unique 8–byte ROM code written into each part at the
time of manufacture. The components of this 8–byte
code can be seen in Figure 1. The least significant byte
contains a family code that identifies the type of iButton
product. For example, the DS1990A has a family code
of 01 Hex and the DS1991 has a family code of 02 Hex.
Since multiple devices of the same or different family
types can reside on the same 1–Wire bus simulta-
neously, it is important for the host to be able to deter-
mine how to properly access each of the devices that it
locates on the 1–Wire bus. The family code provides
this information. The next six bytes contain a unique se-
rial number that  allows multiple devices within the same
family code to be distinguished from each other. This
unique serial number can be thought of as an “address”
for each device on the 1–Wire bus. The entire collection
of devices plus the host form a type of miniature local
area network, or Micro-LAN; they all communicate over
the single common wire. The most significant byte in the
ROM code of each device contains a Cyclic Redundan-
cy Check (CRC) value based on the previous seven by-
tes of data for that part. When the host system begins
communication with a device, the 8–byte ROM is read,

LSB  first. If the CRC that is calculated by the host
agrees with the CRC contained in byte 7 of ROM data,
the communication can be considered valid. If this is not
the case, an error has occurred and the ROM code
should be read again.

Some of the iButton products have up to 8K bytes of
RAM in addition to the eight bytes of ROM that can be
accessed by the host system with appropriate com-
mands. Even if iButtons do not have CRC hardware on-
board, if the host has the capability to calculate a CRC
value for the ROM codes, then a procedure to store and
retrieve data in the RAM portion of the devices using
CRCs can also be developed. Data can be written to the
device in the normal manner; then a CRC value that has
been calculated by the host is appended and stored with
the data.  When this data is retrieved from the iButton,
the process is reversed. The host compares the CRC
value that was computed for the data bytes to the value
stored in memory as the CRC for that data. If the values
are equal, the data read from the iButton can be consid-
ered valid.  In order to take advantage of the power of
CRCs to validate the serial communication on the
1–Wire bus, an understanding of what a CRC is and
how they work is necessary. In addition, a practical
method for calculation of the CRC values by the host will
be required for either a hardware or software imple-
mentation.

iButton SYSTEM CONFIGURATION USING DOW CRC  Figure 1

Dallas Semiconductor
1-Wire Device
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64-BIT ONE-WIRE ROM CODE

GND

1–WIRE
 Bus

I/O
MSB

The CRC (Byte 7) has been computed for the data con-
tained in Byte 0 through Byte 6 and the value has been writ-
ten into Byte 7 for each Dallas Semiconductor 1–Wire de-
vice.

If CRC value that is computed for the first
56 data bits of the ROM code agrees with
CRC value contained in Byte 7 of ROM
code, continue reading data. Otherwise,
the ROM should be reread.
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BACKGROUND
Serial data can be checked for errors in a variety of
ways. One common way is to include an additional bit in
each packet being checked that will indicate if an error
has occurred. For packets of 8–bit ASCII characters, for
example, an extra bit  is appended to each ASCII char-
acter that indicates if the character contains errors. Sup-
pose the data consisted of a bit string of 11010001. A
ninth bit would be appended so that the total number of
bits that are 1’s is always an odd number. Thus, a 1
would be appended and the data packet would become
111010001. The underlined character indicates the par-
ity bit value required to make the complete 9–bit packet
have an odd number of bits. If the received data was
11101000 1, then it would be assumed that the informa-
tion was correct. If, however, the data received was
111010101, where the 7th bit from the left has been in-
correctly received, the total number of 1’s is no longer
odd and an error condition has been detected and ap-
propriate action would be taken. This type of scheme is
called odd parity. Similarly, the total number of 1’s could
also be chosen to always be equal to an even number,
thus the term even parity. This scheme is limited to de-
tecting an odd number of bit errors, however.  In the ex-
ample above,  if the data was corrupted and became
111011101 where both the 6th and 7th bits from the left
were wrong, the parity check appears correct; yet the er-
ror would go undetected whether even or odd parity was
used.

DESCRIPTION
Dallas Semiconductor 1–Wire CRC
The error detection scheme most effective at locating
errors in a serial data stream with a minimal amount of
hardware is the Cyclic Redundancy Check (CRC).  The
operation and properties of the CRC function used in
Dallas Semiconductor products will be presented with-
out going into the mathematical details of proving the
statements and descriptions. The mathematical con-
cepts behind the properties of the CRC are described in
detail in the references. The CRC can be most easily un-
derstood by considering the function as it would actually
be built in hardware,  usually represented as a shift reg-
ister arrangement with feedback as shown in Figure 2.
Alternatively, the CRC is sometimes referred to as a
polynomial expression in a dummy variable X, with
binary coefficients for each of the terms. The coeffi-
cients correspond directly to the feedback paths shown
in the shift register implementation. The number of
stages in the shift register for the hardware description,
or the highest order coefficient present in the polynomial

expression, indicate the magnitude of the CRC value
that will be computed. CRC codes that are commonly
used in digital data communications include the
CRC–16 and the CRC–CCITT, each of which computes
a 16–bit CRC value. The Dallas Semiconductor 1–Wire
CRC  (DOW CRC) magnitude is eight bits, which is used
for checking  the 64–bit ROM code written into each
1–Wire product.  This ROM code consists of an  8–bit
family code written into the least significant byte, a
unique 48–bit serial number written into the next six by-
tes, and a CRC value that is computed based on the pre-
ceding 56 bits of ROM and then written into the most sig-
nificant byte. The location of the feedback paths
represented by the exclusive–or gates in Figure 2, or the
presence of coefficients in the polynomial expression,
determine the properties of the CRC and the ability of
the algorithm to locate certain types of errors in the data.
For the DOW CRC, the types of errors that are detect-
able are:

1. Any odd number of errors anywhere within the
64–bit number.

2. All double-bit errors anywhere within the 64–bit
number.

3. Any cluster of errors that can be contained within
an 8–bit “window” (1–8 bits incorrect).

4. Most larger clusters of errors.

The input data is Exclusive–Or’d with the output of the
eighth stage of the shift register in Figure 2. The shift
register may be considered mathematically as a divid-
ing circuit. The input data is the dividend, and the shift
register with feedback acts as a divisor. The resulting
quotient is discarded, and the remainder is the CRC  val-
ue for that particular stream of input data, which resides
in the shift register after the last data bit has been shifted
in. From the shift register implementation it is obvious
that the final result (CRC value) is dependent, in a very
complex way, on the past history of the bits presented.
Therefore, it would take an extremely rare combination
of errors to escape detection by this method.

The example in Figure 3 calculates the CRC value after
each data bit is presented. The shift register circuit is al-
ways reset to 0’s at the start of the calculation. The com-
putation begins with the LSB of the 64–bit ROM, which
is the 02 Hex family code in this example. After all 56
data bits (serial number + family code) are input, the val-
ue that is contained in the shift register is A2 Hex, which
is the DOW CRC value for that input stream. If the CRC
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value which has been calculated (A2 Hex in this exam-
ple), is now used as input to the shift register for the next
eight bits of data, the final result in the shift register after
the entire 64 bits of data have been entered should be all
0’s. This property is always true for the DOW CRC algo-
rithm. If any 8–bit  value that appears in the shift register
is also used as the next eight bits in the input stream,
then the result that appears in the shift register after the
8th data bit has been shifted in is always 00 Hex. This
can be explained by observing that the contents of the
8th stage of the shift register is always equal to the in-
coming data bit, making the output of the EXOR gate
controlling the feedback and the next state value of the

first stage of the shift register always equal to a logic 0.
This causes the shift register to simply shift in 0’s from
left to right as each data bit is presented, until the entire
register is filled with 0’s after the 8th bit. The structure of
the Dallas Semiconductor 1–Wire 64–bit ROM uses this
property to simplify the hardware design of a device
used to read the ROM. The shift register in the host is
cleared and then the 64 ROM bits are read, including the
CRC value. If a correct read has occurred, the shift reg-
ister is again all 0’s which is an easy condition to detect.
If a non-zero value remains in the shift register, the read
operation must be repeated.

DALLAS 1–WIRE 8–BIT CRC  Figure 2

1ST
STAGE

2ND
STAGE

3RD
STAGE

4TH
STAGE

5TH
STAGE

6TH
STAGE

7TH
STAGE

8TH
STAGE

X0 X1 X2 X3 X4 X5 X6 X7 X8

INPUT DATA

Polynomial = X8 + X5 + X4 + 1

Until now, the discussion has centered around a hard-
ware representation of the CRC process, but clearly a
software solution that parallels the hardware methodol-
ogy is another means of computing the DOW CRC val-
ues. An example of how to code the procedure is given
in Table 1. Notice that the XRL (exclusive or) of the A
register with the constant 18 Hex is due to the presence
of the EXOR feedback gates in the DOW CRC after the
fourth and fifth stages as shown in Figure 2. An alterna-
tive software solution is to simply build a lookup table
that is accessed directly for any 8–bit value currently
stored in the CRC register and any 8–bit pattern of new
data. For the simple case where the current value of the
CRC register is 00 Hex, the 256 different bit combina-
tions for the input byte can be evaluated and stored in a
matrix, where the index to the matrix is equal to the value
of the input byte (i.e., the index will be I = 0–255). It can
be shown that if the current value of the CRC register is
not 00 Hex,  then for any current CRC value and any in-
put byte, the lookup table values would be the same as
for the simplified case, but the computation of the index
into the table would take the form of:

New CRC = Table [I]  for I=0 to 255 ;  
where I = (Current CRC) EXOR (Input byte)

For the case where the current CRC register value is 00
Hex, the equation reduces to the simple case. This se-
cond approach can reduce computation time since the
operation can be done on a byte basis, rather than the
bit-oriented commands of the previous example. There
is a memory capacity tradeoff, however, since the look-
up table must be stored and will consume 256 bytes
compared to virtually no storage for the first example ex-
cept for the program code. An example of this type of
code is shown in Table 2. Figure 4 shows the previous
example repeated using the lookup table approach.
Two properties of the DOW CRC can be helpful in de-
bugging code used to calculate the CRC values. The
first property has already been mentioned for the hard-
ware implementation. If the current value of the CRC
register is used as the next byte of data, the resulting
CRC value will always be 00 Hex (see explanation
above). A second property that can be used to confirm
proper operation of the code is to enter the 1’s comple-
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ment of the current value of the CRC register. For the
DOW CRC algorithm, the resulting CRC value will al-
ways be 35 Hex, or 53 Decimal. The reason for this can

be explained by observing the operation of the CRC reg-
ister as the 1’s complement data is entered, as shown in
Figure 5.

ASSEMBLY LANGUAGE PROCEDURE  Table 1
DO_CRC: PUSH ACC ;save accumulator 

PUSH B ;save the B register 
PUSH ACC ;save bits to be shifted 
MOV B,#8 ;set shift = 8 bits ;

CRC_LOOP: XRL A,CRC ;calculate CRC
RRC A ;move it to the carry 
MOV A,CRC ;get the last CRC value 
JNC ZERO ;skip if data = 0 
XRL A,#18H ;update the CRC value 

;

ZERO: RRC A ;position the new CRC 
MOV CRC,A ;store the new CRC 
POP ACC ;get the remaining bits 
RR A ;position the next bit 
PUSH ACC ;save the remaining bits 
DJNZ B,CRC_LOOP ;repeat for eight bits 
POP ACC ;clean up the stack 
POP B ;restore the B register 
POP ACC ;restore the accumulator 
RET
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EXAMPLE CALCULATION FOR DOW CRC  Figure 3

Complete 64–Bit 1–Wire ROM Code: A2 00 00 00 01 B8 1C 02
Family Code: 0 2 Hex

0000 0010 Binary

Serial Number: 0 0 0 0 0 0 0 1 B 8 1 C Hex
0000 0000 0000 0000 0000 0000 0000 0001 1011 1000 0001 1100 Binary

CRC VALUE INPUT VALUE
00000000 0
00000000 1
10001100 0 2
01000110 0 _____
00100011 0
10011101 0
11000010 0 0
01100001 0 _____
10111100 0
01011110 0
00101111 1 C
00010111 1 _____
00001011 1
00000101 0
10001110 0 1
01000111 0 _____
10101111 0
11011011 0
11100001 0 8
11111100 1 _____
11110010 1
11110101 1
01111010 0 B
00111101 1 _____
00011110 1
10000011 0
11001101 0 1
11101010 0 _____
01110101 0
10110110 0
01011011 0 0
10100001 0 _____
11011100 0
01101110 0
00110111 0 0
10010111 0 _____
11000111 0
11101111 0
11111011 0 0
11110001 0 _____
11110100 0
01111010 0
00111101 0 0
10010010 0 _____
01001001 0
10101000 0
01010100 0 0
00101010 0 _____
00010101 0
10000110 0
01000111 0 0
10101101 0 _____
11011010 0
01101101 0
10111010 0 0
01011101 0 _____

10100010 = A2 Hex = CRC Value for [00000001B81C (Serial Number) + 02 (Family Code)]
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CRC VALUE INPUT VALUE
10100010 0
01010001 1
00101000 0 2
00010100 0 _____
00001010 0
00000101 1
00000010 0 A
00000001 1 _____

00000000 = 00 Hex = CRC Value for A2 [(CRC) + 00000001B81C (Serial Number) + 02 (Family Code)]

DOW CRC LOOKUP FUNCTION  Table 2
Var
   CRC : Byte;

Procedure Do_CRC(X: Byte);
{
   This procedure calculates the cumulative Dallas Semiconductor 1–Wire CRC of all bytes passed to it.  The result
accumulates in the global variable CRC.
}

Const
   Table : Array[0..255] of Byte = (

0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65,
157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220,
35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98,
190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255,
70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7,
219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154,
101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36,
248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185,
140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205,
17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80,
175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238,
50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115,
202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139,
87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22,
233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168,
116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53);

Begin
   CRC := Table[CRC xor X];
End;
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TABLE LOOKUP METHOD FOR COMPUTING DOW CRC  Figure 4

Current CRC 
Value (= Current

Table Index)

Input Data New Index
(= Current CRC xor

Input Data)

Table (New Index)
(= New CRC Value)

0000 0000 = 00 Hex 0000 0010 = 02 Hex (00 H xor 02 H) = 
02 Hex = 2 Dec

Table[2]= 1011 1100 = BC Hex = 188 Dec

1011 1100 = BC Hex 0001 1100 = 1C Hex (BC H xor 1C H) = 
A0 Hex = 160 Dec

Table[160]= 1010 1111 = AF Hex = 175 Dec

1010 1111 = AF Hex 1011 1000 = B8 Hex (AF H xor B8 H) = 
17 Hex = 23 Dec

Table[23]= 0001 1110 = 1E Hex = 30 Dec

0001 1110 = 1E Hex 0000 0001 = 01 Hex (1E H xor 01 H) =
 1 F Hex = 31 Dec

Table[31]= 1101 110 = DC Hex = 220 Dec

1101 1100 = DC Hex 0000 0000 = 00 Hex (DC H xor 00 H) =
 DC Hex = 220 Dec

Table[220]= 1111 0100 = F4 Hex = 244 Dec

11110100 = F4 Hex 0000 0000 = 00 Hex (F4 H xor 00 H) =
 F4 Hex = 244 Dec

Table [244]= 0001 0101 = 15 Hex = 21 Dec

0001 0101 = 15 Hex 0000 0000 = 00 Hex (15 H xor 00 H) =
 15 Hex = 21 Dec

Table[21]= 1010 0010 = A2 Hex = 162 Dec

1010 0010 = A2 Hex 10100010 = A2 Hex (A2 H xor A2 H) =
 Hex = 0 Dec

Table[0]=0000 0000 = 00 Hex = 0 Dec

CRC REGISTER COMBINED WITH 1’S COMPLEMENT OF CRC REGISTER  Figure 5

CRC Register Value Input

X0 X1 X2 X3 X4 X5 X6 X7 X7*
1 X0 X1 X2 X3* X4* X5 X6 X6*
1 1 X0 X1 X2* X3 X4* X5 X5*
1 1 1 X0 X1* X2* X3 X4* X4*
0 1 1 1 X0 X1* X2 X3 X3*
1 0 1 1 0 X0* X1* X2 X2*
1 1 0 1 0 1 X0* X1* X1*
0 1 1 0 1 0 1 X0* X0*
0 0 1 1 0 1 0 1 Final CRC Value = 35 Hex, 53 Decimal

Note: Xi* = Complement of Xi

CRC–16 COMPUTATION FOR RAM
RECORDS IN iButtons
As mentioned in the introduction, some iButton devices
have RAM in addition to the unique 8–byte ROM code
found in all iButtons. Because the amount of data stored
in RAM can be large compared to the 8–byte ROM
code, Dallas Semiconductor recommends using a
16–bit CRC value to ensure the integrity of  the data,
rather than the 8–bit DOW CRC used for the ROM. The
particular CRC suggested is commonly referred to as
CRC–16. The shift register and polynomial representa-
tions are given in Figure 6. The figure shows that for a
16–bit CRC, the shift register will contain 16 stages and

the polynomial expression will have a term of the six-
teenth order. As stated previously, the iButton devices
do not calculate the CRC values. The host must gener-
ate the value and then append the 16-bit CRC value to
the end of the actual data. Due to the uncertainty of the
iButton’s “communication channel,” i.e., the two metal
contact surfaces, data transfers can experience errors
that generally fall into three categories. First, brief inter-
mittent connections can cause small numbers of bit er-
rors to occur in the data, which  the normal CRC–16
function is designed to detect. The second type of error
occurs when contact is lost altogether, for example
when the iButton is removed from the reader too quickly.



1ST
STAGE

2ND
STAGE

3RD
STAGE

4TH
STAGE

5TH
STAGE

6TH
STAGE

7TH
STAGE

8TH
STAGE

X0 X1 X2 X3 X4 X5 X6 X7 X8

Polynomial = X16 + X15 + X2 + 1

9TH
STAGE

10TH
STAGE

11TH
STAGE

12TH
STAGE

13TH
STAGE

14TH
STAGE

15TH
STAGE

16TH
STAGE

X9 X10 X11 X12 X13 X14 X15

INPUT DATA

X16
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This causes the last portion of the data to be read as log-
ic 1’s, since no connection to an iButton will be inter-
preted as all 1’s by the host. The normal CRC–16 func-
tion can also detect this condition under most
circumstances. The third type of error is generated by a
short circuit across the reader, which can be caused by
an iButton that is not inserted correctly, or tilted signifi-
cantly once in the reader. A short at the reader causes
the data to be read as all 0’s by the host. When using
CRCs, this can cause problems, since the method to de-
termine the validity of the data is to read the data plus the
stored CRC value, and see if the resulting CRC com-
puted at the host is 0000 Hex (for a 16–bit CRC.) If the
reader was shorted, the data plus the CRC value stored
with the data will be read as all 0’s, and a false read will
have occurred, but the CRC computed by the host will
incorrectly indicate a valid read. In order to avoid this sit-
uation, Dallas Semiconductor recommends storing the
complement of the computed CRC–16 value
(CRC–16*) with the data that is written into the RAM.
Using an uncomplemented CRC–16 value, the retrieval
of data from the iButton is similar to the DOW CRC case.
That is, if the CRC register in the host is initialized to
0000 Hex and then all of the data plus the CRC–16 value
stored with the data is read from the iButton, the result-

ing calculation by the host should have a 0000 Hex, as a
final result. If instead, the complement of the CRC–16
value is stored with the data in the iButton, then the CRC
register at the host is initialized to 0000 Hex and the ac-
tual data plus the stored CRC–16* value is read. The re-
sultant CRC value should be B001 Hex for a valid read.
This greatly improves the operation of the system, since
it can no longer be fooled by a short at the reader. The
reason that the CRC–16 function has these properties
can be shown in an analogous manner to the DOW CRC
case (see Figures 3 and 5). The operation of the 16–bit
CRC is identical in theory to the 8 bit version described
earlier, but the properties of the CRC change since a
16–bit value is now available for error detection. For the
CRC–16 function, the types of errors that are detectable
are:

1. Any odd number of errors anywhere within the data
record.

2. All double–bit errors anywhere within the data re-
cord.

3. Any cluster of errors that can be contained within a
16–bit “window” (1–16–bits incorrect).

4. Most larger clusters of errors.

CRC–16 HARDWARE DESCRIPTION AND POLYNOMIAL  Figure 6
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The hardware implementation of the CRC–16 function
is straightforward from the description  given  in
Figure 6. Table 3 shows a software solution that is anal-
ogous to the hardware operations which compute the
CRC–16 values using single–bit operations. As before,
a less computation–intensive software solution can be
developed through the use of a lookup table. The basic
concepts presented for the 8 bit DOW CRC lookup table
also work for the CRC–16 case. A slight modification in
procedure from the 8–bit case is required, however, be-
cause if the entire 16–bit result for the CRC–16 function
were mapped into one table as before, the table would
have 216 or 65536 entries. A different approach is
shown in Table 4, where the 16–bit CRC values are
computed and stored in two 256–entry tables, one con-
taining the high order byte and the other the low order
byte of the resultant CRC. For any current 16–bit CRC
value, expressed as Current_CRC16_Hi for the current
high order byte and Current _CRC16_Lo for the current

low order byte, and any new input byte, the equation to
determine the index into the high order byte table for
locating the new high order byte CRC value
(New_CRC16_Hi) is given as:

New_CRC16_Hi = CRC16_Tabhi[I]  for I=0 to 255;
where I = (Current_CRC16_Lo) EXOR (Input byte)

The equation to determine the index into the low order
byte table for locating the new low order byte CRC value
(New_CRC16_Lo) is given as:

New_CRC16_Lo = (CRC16_Tablo[I])  EXOR (Cur-
rent_CRC16_Hi)    for I=0 to 255; 
where I = (Current_CRC16_Lo) EXOR (Input byte)

An example of how this method works is shown in Fig-
ure 7.

ASSEMBLY LANGUAGE FOR CRC–16 COMPUTATION  Table 3

crc_lo data 20h ; lo byte of crc calculation (bit addressable)
crc_hi data 21h ; hi part of crc calculation

•

•

•
;-------------------------------------------------------
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc’ed
; - two direct variables are used crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
;-------------------------------------------------------
crc16: ; calculate crc with accumulator

push b ; save value of b
mov b, #08h ; number of bits to crc.

crc_get_bit:
rrc a ; get low order bit into carry
push acc ; save a for later use

jc crc_in_1 ;got a 1 input to crc
mov c, crc_lo.0 ;xor with a 0 input bit is bit
sjmp crc_cont ;continue

crc_in_1:
mov c, crc_lo.0 ;xor with a 1 input bit
cpl c ;is not bit.

crc_cont:
jnc crc_shift ; if carry set, just shift
cpl crc_hi.6 ;complement bit 15 of crc
cpl crc_lo.1 ;complement bit 2 of crc

crc_shift
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mov a,  crc_hi ; carry is in appropriate setting
rrc a ; rotate it
mov crc_hi,  a ; and save it
mov a, crc_lo ; again, carry is okay
rrc a ; rotate it
mov crc_lo, a ; and save it

pop acc ; get acc back
djnz b, crc_get_bit ; go get the next bit

pop b ; restore b
ret

end
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ASSEMBLY LANGUAGE FOR CRC–16 USING A LOOKUP TABLE  Table 4

crc_lo data 40h ; any direct address is okay
crc_hi data 41h
tmp data 42h

•

•

•
;-------------------------------------------------------
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc’ed
; - three direct variables are used, tmp, crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
; - this CRC16 algorithm uses a table lookup
;-------------------------------------------------------
crc16:

xrl a, crc_lo ; create index into tables
mov tmp, a ; save index
push dph ; save dptr
push dpl ;
mov dptr, #crc16_tablo ; low part of table address
movc a, @a+dptr ; get low byte
xrl a, crc_hi ; 
mov crc_lo, a ; save of low result

mov dptr, #crc16_tabhi ; high part of table address
mov a, tmp ; index
movc a, @a+dptr ; 
mov crc_hi, a ; save high result

pop dpl ; restore pointer
pop dph ;
ret ; all done with calculation

crc16_tablo:
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
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db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h

crc16_tabhi:
db 000h, 0c0h, 0c1h, 001h, 0c3h, 003h, 002h, 0c2h
db 0c6h, 006h, 007h, 0c7h, 005h, 0c5h, 0c4h, 004h
db 0cch, 00ch, 00dh, 0cdh, 00fh, 0cfh, 0ceh, 00eh
db 00ah, 0cah, 0cbh, 00bh, 0c9h, 009h, 008h, 0c8h
db 0d8h, 018h, 019h, 0d9h, 01bh, 0dbh, 0dah, 01ah
db 01eh, 0deh, 0dfh, 01fh, 0ddh, 01dh, 01ch, 0dch
db 014h, 0d4h, 0d5h, 015h, 0d7h, 017h, 016h, 0d6h
db 0d2h, 012h, 013h, 0d3h, 011h, 0d1h, 0d0h, 010h
db 0f0h, 030h, 031h, 0f1h, 033h, 0f3h, 0f2h, 032h
db 036h, 0f6h, 0f7h, 037h, 0f5h, 035h, 034h, 0f4h
db 03ch, 0fch, 0fdh, 03dh, 0ffh, 03fh, 03eh, 0feh
db 0fah, 03ah, 03bh, 0fbh, 039h, 0f9h, 0f8h, 038h
db 028h, 0e8h, 0e9h, 029h, 0ebh, 02bh, 02ah, 0eah
db 0eeh, 02eh, 02fh, 0efh, 02dh, 0edh, 0ech, 02ch
db 0e4h, 024h, 025h, 0e5h, 027h, 0e7h, 0e6h, 026h
db 022h, 0e2h, 0e3h, 023h, 0e1h, 021h, 020h, 0e0h
db 0a0h, 060h, 061h, 0a1h, 063h, 0a3h, 0a2h, 062h
db 066h, 0a6h, 0a7h, 067h, 0a5h, 065h, 064h, 0a4h
db 06ch, 0ach, 0adh, 06dh, 0afh, 06fh, 06eh, 0aeh
db 0aah, 06ah, 06bh, 0abh, 069h, 0a9h, 0a8h, 068h
db 078h, 0b8h, 0b9h, 079h, 0bbh, 07bh, 07ah, 0bah
db 0beh, 07eh, 07fh, 0bfh, 07dh, 0bdh, 0bch, 07ch
db 0b4h, 074h, 075h, 0b5h, 077h, 0b7h, 0b6h, 076h
db 072h, 0b2h, 0b3h, 073h, 0b1h, 071h, 070h, 0b0h
db 050h, 090h, 091h, 051h, 093h, 053h, 052h, 092h
db 096h, 056h, 057h, 097h, 055h, 095h, 094h, 054h
db 09ch, 05ch, 05dh, 09dh, 05fh, 09fh, 09eh, 05eh
db 05ah, 09ah, 09bh, 05bh, 099h, 059h, 058h, 098h
db 088h, 048h, 049h, 089h, 04bh, 08bh, 08ah, 04ah
db 04eh, 08eh, 08fh, 04fh, 08dh, 04dh, 04ch, 08ch
db 044h, 084h, 085h, 045h, 087h, 047h, 046h, 086h
db 082h, 042h, 043h, 083h, 041h, 081h, 080h, 040h
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COMPARISON OF CALCULATION AND TABLE LOOKUP METHOD FOR CRC–16  Figure 7

Example:
CRC register starting value: 90 F1 Hex 
Input Byte: 75 Hex

Calculation Method

Current CRC Value

1001 0000 1111 0001

0100 1000 0111 1000

0010 0100 0011 1100

1011 0010 0001 1111

1111 1001 0000 1110

1101 1100 1000 0110

1100 1110 0100 0010

1100 0111 0010 0000

0110 0011 1001 0000

New CRC Value = 63 90 Hex

Input

1

0

1

0

1

1

1

0

Table Lookup Method

Current_CRC16_Lo = F1 Hex
Current_CRC16_Hi = 90 Hex
Input byte = 75 Hex

Tabhi Index= (Current_CRC16_Lo) EXOR (Input byte) 
= F1 EXOR 75= 84 Hex = 132 Dec

New_CRC16_Hi = Tabhi[132] = 63 Hex (from Table 4.)

Tablo Index = (Current_CRC16_Lo) EXOR (Input byte) = 132 Dec
Tablo[132] = 00 Hex (from Table 4.)
New_CRC16_Lo = Tablo[132] EXOR (Current_CRC16_Hi)

= 00 EXOR 90 = 90 Hex

New CRC Value = 63 90 Hex

An interesting intermediate method is presented in
Table 5. The code will generate a CRC–16 value for
each byte input to it by operating on the entire current
CRC value and the incoming byte using the equations
shown in Figure 8. The derivations for the equations are
also shown, using alpha characters to represent the
current 16–bit CRC value and numeric characters to
represent the bits of the incoming byte. The result after
eight shifts yields the equations shown. These equa-
tions can then be used to precompute large portions of
the new CRC value. Notice, for example, that the quanti-
ty ABCDEFGH01234567 (defined as the EXOR of all of
those bits) is the parity of the incoming data byte and the
low order byte of the current CRC. This method reduces
computation time and memory space as compared to
both the bit–by–bit and lookup table methods described
above. Finally, two properties of the CRC–16 function
that can be used as test cases are mentioned as an aid
to debugging the code for any of the previous methods.

The first property is identical to the DOW CRC case. If
the current 16–bit contents of the CRC register are also
used as the next 16–bits of input, the resulting CRC val-
ue  is always 0000 Hex. A second property of the
CRC–16 function is also similar to the DOW CRC case,
if the 1’s complement of the current 16–bit contents of
the CRC register are also used as the next 16–bits of in-
put, the resulting CRC value is always B0 01 Hex. The
proof for these two CRC–16 properties follows in an
analogous way to the proof for the DOW CRC case.

REFERENCES:
Stallings, William, Ph.D., Data and Computer Commu-
nications. 2nd ed., New York: Macmillan Publishing.
107-112.

Buller, Jon, “High Speed Software CRC Generation”,
EDN, Volume 36, #25, pg. 210.
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ASSEMBLY LANGUAGE PROCEDURE FOR HIGH–SPEED CRC–16 COMPUTATION  Table 5
lo        equ 40h ; low byte of CRC
hi        equ 41h ; high byte of CRC

•

•

•
crc16:
          push acc ; save the accumulator.

          xrl a, lo
          mov lo,  hi ; move the high byte of the CRC.
          mov hi, a ; save data xor low(crc) for later
          mov c,  p
          jnc crc0
          xrl lo,  #01h ; add the parity to CRC bit 0
crc0:
          rrc a  ; get the low bit in c
          jnc crc1
          xrl lo,  #40h ; need to fix bit 6 of the result
crc1:
          mov c, acc.7
          xrl a, hi ; compute the results for other bits.
          rrc a ; shift them into place
          mov hi, a ; and save them
          jnc crc2
          xrl lo, #80h ; now clean up bit 7
crc2:
          pop  acc ; restore everything and return
          ret
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HIGH–SPEED CRC–16 COMPUTATION METHOD  Figure 8
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APPENDIX 2
USE OF ADD–ONLY i Button FOR SECURE STORAGE OF MONETARY EQUIVALENT DATA

I.  INTRODUCTION
The fare payment system used by the Bay Area Rapid
Transit (BART) system in San Francisco is an example
of an application in which monetary equivalent data is
read and written electronically.  In this system, the user
can obtain a transit ticket and deposit any desired
amount of money into it from an automatic vending
machine.  The information is stored in the ticket magnet-
ically in the form of encoded data written on a magnetic
stripe.  Each time the user travels from one place to
another, the system deducts the fare from the amount
represented by the magnetically encoded data, thus
reducing the value of the ticket.  When the value of the
ticket is nearly exhausted, it can be restored to a high
value by inserting it again into an automatic vending
machine and depositing additional funds.

The BART system eliminates the need for handling
money and making change at the point of entry to the
transit system, thereby reducing labor costs and
increasing efficiency.  A similar advantage can be real-
ized in many other circumstances where an electroni-
cally readable and alterable “token” can eliminate the
costs and delays associated with money handling at the
point of use.  Such a token might therefore be used as a
meal ticket on a college campus, as a ride ticket at an
amusement park, or wherever tickets or tokens are now
used to speed monetary payments and/or eliminate
unnecessary labor.

The system described above suffers from three signifi-
cant disadvantages:

A. Paper tickets with magnetic stripes deposited on
them are subject to wrinkling or tearing which can
cause loss of the monetary equivalent data.  Also,
the magnetic stripes are subject to erasure by envi-
ronmental magnetic fields, even if the paper carrier
and magnetic material are physically intact.

B. Since magnetic recording is a read/write technology,
it is possible for a technologically sophisticated per-
son to read the contents of the magnetic stripe when
the ticket has a large monetary value, use the ticket
until the value is nearly gone, then rewrite the origi-
nal data into the ticket to restore its original value.
It is not necessary for the person to understand the
encoding of the monetary data in order to do this.
Therefore, the use of a read/write technology makes
the tickets vulnerable to counterfeiting.

C. The magnetic recording technology requires uni-
form motion of the magnetic material across the
read/write heads in order to read and write data reli-
ably.  This makes it necessary to use a relatively
complex mechanical ticket–handling mechanism to
read, debit, and rewrite the monetary equivalent
data.

II.  ADD–ONLY i Button AS AN ALTERNATIVE
TECHNOLOGY FOR MONETARY TOKENS
Add–Only iButton provides a viable alternative technol-
ogy for storage of monetary equivalent data which deliv-
ers the advantages described above but does not suffer
from the disadvantages.  iButton is sealed in a durable
stainless steel Microcan which protects it against envi-
ronmental damage.  Reading and writing data is accom-
plished with a momentary contact to a simple electrical
probe, requiring no sophisticated mechanical handling
mechanisms.  The add–only attribute of Add–Only
iButton provides protection against counterfeiting, since
the data in these memories can never be restored to its
original value once it has been modified.

Add–Only iButton contains many bits of information,
with each bit having either a one or a zero value.  Initially,
all the bits in the memory are ones.  The read/write
probe can read these bits, and it can also selectively
change one or more of the bits to zero.  Once a bit has
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been changed to a zero, it cannot be changed back to a
one.  Writing a bit is therefore much like punching a hole
in a meal ticket card.  The electrically alterable bits are
organized into memory pages having 256 bits each.  In
addition to these electrically alterable bits, each iButton
also contains a unique 64 bit registration number which
cannot be altered.  No two iButtons ever have the same
registration number.  Finally, each page has a status
register that can be read to determine which pages have
been used up, and error detection circuitry (CRC) which
allows the reader to determine if it has read the data cor-
rectly.

With this feature set, it is possible to design a system in
which monetary equivalents can be added to or
removed from the part many times before it must be
replaced, and which is highly resistant to counterfeiting.
The basic principle of this system is described below.

III.  ELECTRONIC CREDITING AND
DEBITING OF ADD–ONLY i Button
One possible technique which allows storage of credits
and debits in Add–Only iButton is as follows.  Monetary
units are added by changing one bits to zero bits starting
from the least significant bit of each page and progress-
ing toward the most significant bit.  Monetary units are
debited by changing one bits to zero bits starting from
the most significant bit of each page and progressing
toward the least significant bit.  As the memory is repeat-
edly debited and credited, the rows of zero bits grow
toward the middle of the page.  When they meet, the
page is marked as exhausted with the status byte and
the process continues on the next page.  (It is possible to
ignore pages and treat the entire memory as a single
page, but that would require the reading of the entire
memory, increasing the time needed to complete a
transaction.  The electronic read/write process is more
efficient when only a portion of the stored data needs to
be read).  With this technique, assuming the credit units
and debit units have equal value, a 1024 bit memory
could credit and debit 512 monetary units before it was
used up.  If credit units are taken to represent some mul-
tiple of the debit unit, then more debits are allowed.  (For
example, if each credit unit is the equivalent of three
debit units, then a 1024 bit memory would allow 768
debits).

The problem with the simple system described above is
that anyone with the necessary knowledge and equip-
ment to read and write data in Add–Only iButton can
easily increase the value by adding additional credit

units.  This is possible because there is a direct, straight-
forward correspondence between a bit location and its
value.  If the bits were scrambled (permuted) in an
apparently random manner, it would no longer be pos-
sible to determine how to add credit units to the memory.
For example, if 15 bits on a page are still set to one, only
one of these bits will add a credit unit to the memory.
Similarly, only one of the bits will add a debit unit to the
memory.  If any one of the other 13 bits were written to
zero, it would appear out of sequence and would signify
that the memory had been tampered with, thereby inval-
idating it.  Therefore, if a person guesses which bit to
write next, he has one chance in 15 of adding a credit
unit, one chance in 15 of adding a debit unit (decreasing
the value), and 13 chances in 15 of invalidating the
memory and flagging it as having been subject to tam-
pering.  Although there is a chance of guessing correctly
which bit to change, the laws of probability are stacked
against this event.  (This is the kind of statistical analysis
that makes lotteries predictable).

The unique registration number in each iButton can be
used to permute the bits in each part differently, so that
one cannot determine by studying the data in one part
how to add credit units to a different part.  Many different
techniques are possible to determine a unique bit per-
mutation from the unique registration number supplied
with each part.  A few of these techniques are described
below.

IV.  CALCULATING BIT PERMUTATIONS
FROM UNIQUE REGISTRATION NUMBERS
The number of different permutations of the 256 bits in
each page is very large, approximately ten to the power
of 507.  Only a minute fraction of these permutations can
be enumerated with the unique registration number,
since the registration number represents a range of 281
trillion unique numerical values, or about ten to the
power of 14.  The permutations that can be derived from
the unique registration number are thus buried in the
much larger population of possible permutations.  281
trillion is in fact an extremely large set of unique registra-
tion numbers that is sufficient for all practical purposes.
The enormously larger number of different permuta-
tions greatly multiplies the task of deducing the per-
mutation from the registration number.  To select a per-
mutation based on the registration number from this
enormous population, the following method could be
used.
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A. Replace the CRC in the publicly readable registra-
tion number with the page number of the page to be
scrambled and then encrypt it with a standard block
cypher encryption algorithm (such as DES), using a
secret encryption key.  This produces a 64 bit
encrypted number which is unique to each page of
each part and is known only to the reader.

B. Divide the 64 bit encrypted number by 256 to obtain
a quotient and a remainder that lies in the range
0–255.  The value of the remainder gives the posi-
tion of bit 1 in the scrambled data, and leaves 255
other bit positions unfilled.

C. Divide the quotient from step B by 255 to obtain
another quotient and a remainder that lies in the
range 0–254.  The value of this remainder gives the
position of bit 2 in the remaining 255 bits that were
unfilled after step B.

D. Repeat step C for each successive bit, decreasing
the divisor by 1 each time, until all 64 bits have been
placed in their scrambled positions.  Each time the
quotient reaches zero during this process, replace
it with the original encrypted number from step A.

The steps B – D above are numerically intensive and
may not be suitable for microcontroller–based equip-
ment.  A simpler but less secure technique is to start with
an initial, secret, randomly chosen permutation and
then further permute it based on the 64 bit encrypted
number by interchanging certain bits or not depending
on whether a bit in the encrypted number is a one or a
zero.  This method provides a simpler set of permuta-
tions but may still provide adequate security in many
applications.  The complexity of the technique used to
derive permutations from the unique registration num-
ber can be selected based on the degree of security
needed in the application and the amount of computing
power available in the equipment.

V.  DESCRIPTION OF OPERATION
Using the methods described above, the automatic deb-
iting equipment operates as follows to decrease the
value of the memory by one monetary unit:

A. The equipment detects an Add–Only iButton by
means of the presence pulse that it generates, reads
the unique registration number, and checks its valid-
ity with the CRC.

B. The equipment reads the status registers to find the
first page that has not been used up.  It then reads
that page, making use of the built–in CRC calcula-
tion circuitry to confirm the validity of the read.

C. Using a secret encryption key that can be changed
periodically, the equipment applies a standard
encryption algorithm (such as DES) to the unique
registration number (with the CRC replaced with the
active page number) to generate a unique secret
number, and then uses this number to reorder the
bits read from the active page using any of the tech-
niques described in section IV above.

D. After the above reordering, the zero bits starting
from the least significant bit represent credits, and
the zero bits starting from the most significant bit
represent debits.  The data, beginning with the least
significant bit, should therefore appear as an unbro-
ken sequence of zero bits (credits), followed by an
unbroken sequence of one bits (not yet used), fol-
lowed by an unbroken sequence of zero or more
zero bits (debits).  The equipment checks the integ-
rity of these three sequences.  If there is a break in
any of these sequences or if the number of debits
exceeds the number of credits, then there is evi-
dence of tampering and the equipment may take
appropriate action (such as recording the registra-
tion number, or even sounding an alarm or summon-
ing an official).

E. If the number of credits is greater than the number
of debits, the equipment adds one more zero bit to
the unscrambled sequence, checks to make sure
that the page has not been used up, and then uses
the bit permutation in reverse to determine where
the debit bit falls in the original scrambled bit
sequence.  Any time a page is filled, the equipment
writes the status bytes to mark the page as used up
and proceeds to the next page.

F. The equipment performs a write operation to write
the bit identified in step E above from a one to a zero,
then reads back the page to make sure that the write
operation was completed correctly.  When a suc-
cessful write of the debit bit is detected, the equip-
ment activates a peripheral device (passenger gate,
etc.) to signal a completed, successful operation.

The operation of the crediting equipment is similar to
that described above.  The crediting equipment
receives cash from the user and sets one or more credit
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bits to zero to indicate the amount of added value.  When
a page is half full of credit bits, the equipment proceeds
to the next page to add additional credits.  The bits are
written in the scrambled order so that it is impossible to
distinguish the credit bits from the debit bits and the bits
that have not yet been used.

Both the debiting and crediting equipment can make
use of a secure microprocessor (such as the DS5002
secure micro) so that even if the equipment is stolen, it
cannot be made to reveal the secret encryption key
which is used in step C above.  This makes it possible to
limit the knowledge of this information to a very small
number of individuals.  It is important to note that a blank
Add–Only iButton has no monetary value until it his
been credited with monetary equivalents using its
unique bit scrambling algorithm.  Therefore, there is no
advantage to a counterfeiter to obtain a supply of blank
iButtons, and it is unnecessary to take special precau-
tions to safeguard these supplies.

Assuming that a high–performance processor is used
so that the time required to perform the calculations
described above can be neglected, the minimum time
required for a debiting transaction is the time required to
read the unique registration number, read the status
bytes, read the appropriate page, and write out the bit
that represents the debit.  This time, equal to 31.7 milli-

seconds, is scarcely perceptible and would be regarded
as essentially instantaneous by the user.

VI.  SUMMARY
Add–Only iButton has the following special characteris-
tics which make it uniquely suitable for applications
requiring secure crediting, debiting, and portable stor-
age of monetary equivalent data:

A. A unique, unalterable registration number which
allows the data on each different part to be
encrypted differently.  This makes it impossible to
determine how to counterfeit a part by studying how
data is written into a different part.

B. Random–access memory which is one–way alter-
able, that is, having bits that can be changed from a
one to a zero but not from a zero back to a one.  This
makes it impossible to write into a part the data pat-
tern it held earlier when it was more valuable.  (This
type of memory is commonly referred to as one–
time–programmable EPROM, but this terminology
is misleading in the current application because it
suggests that the part can be written only once).

C. A small, durable Microcan package with a simple
electrical connection, allowing data to be read or
written with a momentary contact.
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APPENDIX 3
EXAMPLE OF i Button USAGE IN A BANKING APPLICATION

In the example described below, a Memory iButton is used to emulate an American Banking Association (A.B.A.)
credit card.  Credit cards have a three–track magnetic stripe that can hold up to 1288 bits of information. The data from
the three tracks can be stored in separate files of the Extended File Structure, designated IATA.0, ABA.0, and ATM.0.
The information is encoded in these files in exactly the same format as the corresponding magnetic stripes.  This
facilitates the direct substitution of an iButton reader/writer in place of a magnetic stripe reader/writer.  The following
specifications describe the structure of the data in the three files representing the three magnetic stripes.  The LRC
character has even parity tracks 1 through 3 conform to the data layout and encoding described by the ISO
3554–1976 (E) Standard with the following two exceptions: a) leading zeros to the Start Sentinel character and zeros
following the Longitudinal Redundancy Check (LRC) character are not included in the data; b) clocking bits are not
included in the data.

IATA.0 FILE FORMAT AND DESCRIPTION (TRACK 1)
This track contains up to 79 characters of data encoded in a six–bit character set (Table 1) with an odd parity bit.  This
implies that a maximum of 553 bits of information are contained on this track in 70 bytes. Note that the least significant
bit (LSB) is loaded first, followed by the other data bits and its parity bit. The unused bits in the last data byte are zero-
filled.  In a track that has all 79 characters in it, the seven most significant bits of byte 70, the last byte, are zero–filled
and not used.

IATA FORMAT A

Field Length

Start Sentinel 1

Format Code = ‘A’ 1

Record:

Surname

”/”

First Name

’’ ”

Title

” ” 2 to 26 characters

Separator 1

Discretionary Data balance up to maximum
record length

End Sentinel 1

LRC 1

Maximum of 79
characters

IATA FORMAT B

Field Length

Start Sentinel 1

Format Code = ‘B’ 1

Account Number up to 19 characters

Record:

Surname

”/”

First Name

’’ ”

Title

” ” 2 to 26 characters

Separator 1

Discretionary Data balance up to maximum
record length

End Sentinel 1

LRC 1

Maximum of 79
characters
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ABA.0  FILE FORMAT AND DESCRIPTION (TRACK 2)
This track contains up to 40 characters of data encoded in a four–bit character set (Table 2) with an odd parity bit.  This
implies that a maximum of 200 bits of information are contained on this track in 25 bytes. Note that the least significant
bit (LSB) is loaded first followed by the other data bits and its parity bit. The unused bits in the last data byte are zero-
filled.  In a track that has 39 characters in it, the five most significant bits of byte 25, the last byte, are zero–filled and not
used.

ABA FORMAT DESCRIPTION
Field Length

Start Sentinel 1

Account Number up to 19 characters

Separator 1

Discretionary Data balance up to maximum record length

End Sentinel 1

LRC 1

Maximum of 40 characters

ATM.0  FILE FORMAT AND DESCRIPTION (TRACK 3)
This track contains up to 107 characters of data encoded in a four–bit character set (Table 2) with an odd parity bit.  This
implies that a maximum of 535 bits of information are contained on this track in 67 bytes. Note that the least significant bit
(LSB) is loaded first followed by the other data bits and its parity bit. The unused bits in the last data byte are zero–filled.
In a track that has 107 characters in it, the most significant bit of byte 67, the last byte, is zero–filled and not used.

AUTOMATIC TELLER FORMAT DESCRIPTION
Field Length

Start Sentinel 1

Primary Account Number up to 19 characters

Field Separator 1

End of Cycle Date 4

Amount Remaining 3

Authorized Amount/Cycle 3

Number Days/Cycle 2

Validity Date 4

Expiration Date 4

Service Restrictions 4

Card Member 1

Type Algorithm 2

Account Number ID 3

Offset to Secret Code 4

Retry Count 1

Security Method and Code 9

Discretionary Data Primary Account Number + Discretionary Data < 60

End Sentinel 1

LRC 1

Maximum of 107 characters
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TABLE 1

Decimal Value Graphic Decimal Value Graphic

0 ’   ’ 16 ’ 0 ’

1 � 17 ’ 1 ’

2 � 18 ’ 2 ’

3 � 19 ’ 3 ’

4 ’ $ ’ 20 ’ 4 ’

5 � 21 ’ 5 ’

6 � 22 ’ 6 ’

7 � 23 ’ 7 ’

8 ’ ( ’ 24 ’ 8 ’

9 ’ ) ’ 25 ’ 9 ’

10 � 26 �

11 � 27 �

12 � 28 �

13 ’ – ’ 29 �

14 ’ . ’ 30 �

15 ’ / ’ 31 ’ ? ’�

Decimal Value Graphic Decimal Value Graphic

32 ’ @ ’ 48 ’ P ’

33 ’ A ’ 49 ’ Q ’

34 ’ B ’ 50 ’ R ’

35 ’ C ’ 51 ’ S ’

36 ’ D ’ 52 ’ T ’

37 ’ E ’ 53 ’ U ’

38 ’ F ’ 54 ’ V ’

39 ’ G ’ 55 ’ W ’

40 ’ H ’ 56 ’ X ’

41 ’ I ’ 57 ’ Y ’

42 ’ J ’ 58 ’ Z ’

43 ’ K ’ 59 �

44 ’ L ’ 60 �

45 ’ M ’ 61 �

46 ’ N ’ 62 ’^’

47 ’ O ’ 63 �

� This character position is used for hardware control only.

� This character position is reserved for an additional graphic.

� These characters have the following meanings:
character 5, ’ % ’ : represents the “Start Sentinel”,
character 31, ’ ? ’ : represents the “End Sentinel”,
character 62, ’ ^ ’ : represents the “Separator”.

� This character position is reserved for additional national characters when required.  Not to be used internation-
ally.
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TABLE 2

Decimal Value Graphic Decimal Value Graphic

0 ’ 0 ’ 8 ’ 8 ’

1 ’ 1 ’ 9 ’ 9 ’

2 ’ 2 ’ 10 �

3 ’ 3 ’ 11 �

4 ’ 4 ’ 12 �

5 ’ 5 ’ 13 �

6 ’ 6 ’ 14 �

7 ’ 7 ’ 15 �

� “Start Sentinel”

� “Separator

� “End Sentinel”

� This character position is used for hardware control only.
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APPENDIX 4
MANAGING CONCURRENT INTERRUPTS

IN iButton I/O SOFTWARE

All communication with iButtons are originated by a master using a bit–synchronous, half–duplex, 1–Wire serial link.
Each iButton contains a self–timed serial communication controller which transmits or receives each bit within a spe-
cified period of time after the low–going edge originated by the master.  However, the time interval between bits is
determined by the master and may be arbitrarily long, allowing competing interrupts from other devices to be serviced
between any two bits.  Communication with iButtons is accomplished with falling edge activated time slots lasting 60
µs and with a reset/presence signal having a low and a high period each lasting 480 µs.  These time–dependent sig-
nals are generated and detected by the software procedures TouchReset and TouchBit, which are usually coded in
assembly language because they must produce short, accurate time intervals.  Copies of these routines for a variety
of microprocessors are available from Dallas Semiconductor.

It might appear from the timing requirements of iButton communication that iButton I/O would monopolize the time of
the microprocessor, leaving no time to service competing interrupts from timers or other devices.  In fact, this is not the
case.  When properly written, the TouchReset and TouchBit procedures inhibit interrupts for only a few microseconds
at a time, allowing ample opportunity to service other interrupting devices.  The following text describes typical timing
constraints imposed by the requirements of interrupt service and the proposed method of dealing with them while
performing iButton I/O operations.

The first case to be considered is one in which interrupts generated by competing events may occur at intervals as
short as 15 µs, but the interrupt service procedure requires less than 60 µs to execute.  In this case, as depicted in
Figure 1a, the interrupt system is left enabled at all times except during the first 15 microseconds of a write–one or
read time slot.  The interrupt system must be disabled while the 1–Wire Bus is driven low, released, and sampled, in
order to insure that these operations all take place in a time of 15 µs or less.  (The minimum allowable time between
interrupts can be reduced by using less than 15 µs for these operations, but this fails to take advantage of the available
recovery time and may affect performance of 1–Wire communication with long wire lengths or large numbers of
iButtons on the bus.)  Since interrupt services require less than 60 µs and every logic state in the response period lasts
at least 60 µs, the TouchReset procedure can sample the 1–Wire Bus at a sufficiently high rate that no important char-
acteristics of the response signal are missed.  (Note that if more than half the time is spent servicing interrupts, the
TouchBit procedure may need to reference an independent timer to produce a correctly timed write–zero signal, in
order to insure that the write–zero signal is not extended to 120 µs and misinterpreted as a reset signal.)  Figure 1a
depicts the range of interrupt intervals and durations over which this software solution may be applied.

In the second case, as depicted in Figure 1b, the interrupts occur at intervals as short as 60 µs and the interrupt service
procedures may require more or less than 60 µs to execute.  This case is handled by disabling interrupts during the
entire I/O time slot and also during the critical period of the TouchReset signal.  The critical period is the 60 µs period
immediately following the release of the 1–Wire Bus, after it has been held low for at least 480 µs.  During the critical
period, the procedure watches for the 1–Wire bus to go high and low again (presence pulse), to go high and remain
high (no presence pulse), or to remain low (short circuit).  The remainder of the TouchReset procedure is executed
with interrupts enabled.  Figure 1b depicts the range of interrupt intervals and durations over which this software solu-
tion may be applied.

In the event that the time interval between interrupts from the same competing source is so unpredictable that the 15
µs limit cannot be guaranteed, it is still possible to communicate successfully with an iButton if the typical interval
between interrupts is long enough to allow some communication packets to be sent or received successfully.  To use
this method, the interrupt system is enabled at all times, allowing competing interrupts to operate normally.  Assuming
a competing interrupt is randomly distributed in time, it has approximately one chance in ten of causing a bit error in
either a read or a write operation.  It is therefore still possible, if the average competing interrupt rate is not excessive,
to get a CRC–checked packet transmitted and confirmed without errors.  iButton communication protocols are
inherently error–tolerant to provide reliable communication with uncertain electrical contact, and this mechanism can
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also be used to compensate for bit errors introduced by competing interrupts.  The efficiency of this technique
depends on both the average interrupt rate and the packet size.  That is, as the interrupt environment becomes more
contentious, the effective data transfer rate goes down.

If interrupt timing is so unfavorable that none of the conditions described above are satisfied, the timing problems can
still be eliminated completely by use of a hardware interface which is capable of performing the critical timing and
buffering independently of the software.  This is the case for communication using the PC serial port, where an 8250 or
16C450 UART is used to generate the critical timing and detect the response.  In this case, as depicted in Figure 1c,
TouchReset and TouchBit can be written in a high–level language and interrupts can be left enabled at all times.  This
is the simplest system to design since there is no possibility of interfering with other interrupt–driven processes.  The
8250 and 16C450 UARTs have more capability than is needed for this task, and a much simpler bi–directional single–
bit buffer with hardware–generated timing could suffice.  Most UARTs capable of operation at 115200 bps or above
can be used to handle the timing when performing iButton I/O.  Recently introduced palmtop computers and PDAs like
the Apple Newton, the HP100, and the AST/Tandy/Casio Zoomer all support the 115200 bps rate.  Figure 1c depicts
the range of interrupt intervals and durations over which this software solution may be applied.

1–WIRE COMMUNICATION IN A SHARED PROCESSOR ENVIRONMENT  Figure 1
(SHADED AREA REPRESENTS ASSURED COMMUNICATION)
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